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Abstract
The intrinsic viscoelastic properties of muscle are central to many theories of motor control.
Much of the debate over these theories hinges on varying interpretations of these muscle
properties. In the present study, we describe methods whereby a comprehensive
musculoskeletal model can be used to make inferences about motor control strategies that
would account for behavioral data. Muscle activity and kinematic data from a monkey were
recorded while the animal performed a single degree-of-freedom pointing task in the presence
of pseudo-random torque perturbations. The monkey’s movements were simulated by a
musculoskeletal model with accurate representations of musculotendon morphometry and
contractile properties. The model was used to quantify the impedance of the limb while
moving rapidly, the differential action of synergistic muscles, the relative contribution of
reflexes to task performance and the completeness of recorded EMG signals. Current methods
to address these issues in the absence of musculoskeletal models were compared with the
methods used in the present study. We conclude that musculoskeletal models and kinetic
analysis can improve the interpretation of kinematic and electrophysiological data, in some
cases by illuminating shortcomings of the experimental methods or underlying assumptions
that may otherwise escape notice.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the absence of a rigorous understanding of the mechanics
of a given experiment, interpretations of recorded data may be
ambiguous. This is especially true in the field of motor control,
where disagreements on the intrinsic properties of muscle have
led to conflicting interpretations of many findings. A familiar
example is the much-debated ‘equilibrium-point’ hypothesis
(Asatryan and Feldman 1965). This theory depends on the
intrinsic properties of muscles, including their mechanical
impedance at different velocities, lengths and activation
levels, their normal and reflexive recruitment, their skeletal
actions and their recorded electromyographic (EMG) activity
1 Current address: Sapient Corporation, 200 West Adams, Ste. 2700,
Chicago, IL 60610, USA.

(for review, see Feldman et al (1998)). In particular, the
viscoelastic properties of active muscles have been invoked
as alternative explanations for behaviors otherwise ascribed to
reflexes (Gottlieb 1998, Jaric et al 1998). Assumptions about
the intrinsic mechanical properties of muscle also affect the
interpretation of motor cortical commands (Todorov 2000).
The present study tests the hypothesis that a biomechanical
model with realistic muscle and tendon properties can be used
to resolve such questions.

Neurophysiologists have long sought a way to understand
the functional importance of various classical reflex responses
to perturbations. Experimental designs have been developed
that attempt to isolate the effects of reflexes from
intrinsic muscle impedance. These include elimination of
proprioceptive feedback by cutting off the blood supply to the
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muscles (Marsden et al 1972), comparing matched EMG traces
with and without perturbations (Bennett et al 1994) and using
sinusoidal perturbations at a frequency for which the reflex is
out-of-phase as a result of neural delays (Bennett 1994). While
ingenious, these methods have clear limitations: the first two
methods are limited by the ability of the subject to reproduce
identical movements in many subsequent trials, while the last
method would be sensitive to the differential modulation of
components of the reflex with different latencies (e.g., M1,
M2 and M3 bursts; Lee and Tatton 1982). Mathematical
models avoid the problem of inter-trial variability because
they can be used to estimate the relative contributions of
muscle properties and reflex responses in a single trial. This
is particularly helpful when trying to tease apart the various
mechanisms underlying the gradual acquisition of a motor
skill, during which subjects may be changing many elements
of their strategies at different rates.

Functional anatomists and biomechanists need to
understand the individual roles of the various muscles that
appear to have redundant actions at a given joint. Typically
they have used various optimization criteria, such as minimal
muscle torque or minimal muscle stress, in order to predict
which muscles will be active for a given movement (e.g.,
Kaufman et al (1991), van der Helm (1994) and Chan and
Moran (2006)). These analyses tend to be dominated by the
relative moments of the muscles, which represent only one
aspect of their architecture (Buchanan et al 1989), although
more detailed musculoskeletal models are starting to become
available (Chan and Moran 2006, Song et al 2008a). These
optimization criteria typically ignore factors such as the
effects of ligaments and tendons, the role of antagonistic
muscles (Collins 1995) and the different properties of various
muscle fiber types, all of which could be accounted for in a
musculoskeletal model with sufficient detail. Furthermore,
these and other muscle function studies (e.g. van Bolhuis
and Gielen (1997)) are usually validated by correlating the
preferred movements for each muscle with the EMG observed
during these movements. While this provides information
about the timing of motoneuronal recruitment, it does not
provide reliable information about the mechanical contribution
of the muscle to the movement (van der Helm 1994).
Relative contributions of different muscles cannot be assessed
quantitatively from EMG alone.

A final issue concerns the interpretation of recorded EMG
signals. Because EMG is often assumed to represent an
underlying neural activation command (e.g., Gottlieb (1996)),
the quality and completeness of the recorded EMG is critical.
It is rare to obtain EMG from all of the muscles that cross each
joint under study. Skin surface or superficially implanted EMG
electrodes tend to sample selectively from more superficial
and often atypically fast-twitch, late recruited motor units
(Loeb and Gans 1986, Chanaud et al 1991); in this case,
recorded EMG may be negligible even when a significant part
of the muscle has been recruited. This suggests the need for
some way to assess whether the recorded EMG activity can
account reasonably for the observed behavior. If recorded
EMG envelopes reflect accurately and completely the muscle
activation that produced the behavior, it should be possible

to use the musculoskeletal model to simulate the observed
kinematics. While agreement between simulated and observed
behavior cannot be construed as a definitive validation, a
striking disparity would provide a means to assess the nature
and magnitude of deficits in the EMG data and to suggest
caution in the interpretation of specific results.

Our goal was to demonstrate the utility of an accurate
musculoskeletal model in understanding and quantifying the
issues discussed above. We constructed a single degree-of-
freedom model of the Macaca mulatta forearm, with eight
realistic musculotendon elements corresponding to each major
flexor and extensor muscle acting on the elbow. The activation
of each musculotendon element was driven by the EMG
activity recorded by chronically implanted electrodes in a
Macaca mulatta performing a pointing task. We introduced
stochastically predictable torque perturbations in order to test
the ability of the model-based analysis to assess the evolving
behavioral strategies of the monkey. Accuracy of the model
was assessed initially by linearly scaling each EMG-activation
input to the model to best fit the kinematic data from the
elbow. Only one scalar must be fit for each muscle from a
large data set including a large number of diverse movements
and the corresponding EMG envelopes. We then simulated
the animal’s arm movements with EMG data sampled from
periods corresponding to variations in presumed movement
strategies, to better understand the cause of each of these
adaptations. We have focused on four questions: (1) the
compatibility of recorded EMG with the observed movement
kinematics, (2) differential recruitment of synergistic elbow
flexors, (3) use of different movement speeds to counteract
anticipated perturbations and (4) the relative mechanical
effectiveness of reflexes and reflex modulation. The limited
results presented here are not intended to identify general
motor strategies but rather to illustrate the potential value of
model-based analyses of muscle torque production, impedance
and energy consumption.

2. Materials and methods

Intramuscular EMG electrodes were used to record activity
in eight selected elbow joint muscles during a single-
joint pointing task performed by a head-restrained Macaca
mulatta monkey. Muscle activity was recorded during time-
limited, precision elbow movements that were made toward a
target signified by illuminating a light emitting diode (LED;
figure 1(B)), in the presence of brief torque pulses that
either assisted or resisted the movement of the arm to the
target according to a pseudo-random schedule. Elbow angle,
tangential acceleration and external torque were recorded;
elbow velocity and net muscle torque were computed. EMG
data were used to drive a biomechanical model of a Macaca
mulatta single degree-of-freedom elbow joint. The model was
based on morphometric data obtained in a series of cadaver
dissections (Cheng and Scott 2000).

2.1. Animal preparation

The experiment was performed at Queen’s University,
Kingston, Ontario, Canada, using a male rhesus monkey
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(A)

(B)

Figure 1. Experimental preparation. (A) Right arm of Macaca
mulatta showing the placement of incisions and EMG electrodes
(see the materials and methods section for abbreviations). (B)
Apparatus. The animal’s forearm was strapped to a manipulandum
that pivoted about the elbow joint and restricted
pronation/supination and varus/valgus movements of the wrist.
The task required the subject to point and hold at targets at 70◦ or
110◦ (±3◦) alternately, where 0◦ represents full extension. A green
LED indicated which target was currently active and a red LED
indicated when the arm was within that target window. Part way
through the movement, brief torque perturbations could be applied
either to assist or resist the ongoing movement.

weighing approximately 10 kg, cared for in compliance
with guidelines of the Canadian Council on Animal Care.
After training on the behavioral paradigm (see below), the
monkey was chronically implanted with EMG electrodes
and a skull pedestal; the latter allowed head fixation and
incorporated a connector to the EMG electrodes. Anesthesia
was induced with intramuscular ketamine HCl (10 mg kg−1)
followed by intravenous Saffan (0.5 ml kg−1) and maintained
during surgery with 1–2% isofluorane gas administered by
an endotracheal tube. Heart rate, respiration rate and body
temperature were monitored. Post-operative medications
included penicillin, buprenorphine (analgesic) and Banamine
(anti-inflammatory).

EMG electrodes were surgically implanted in the
monkey’s right arm under direct observation (see figure 1(A)).
Incision 1 (lateral) allowed implantation of the lateral and
long heads of the triceps (TLa and TLo). The extensor carpi
radialis longus (ECRL) and brachioradialis (Br) muscles were
implanted via incision 2 (radial side of the forearm). The short

and long head of the biceps (BS and BL), medial head of the
triceps (TMe) and the dorsoepitrochlearis (De) muscle were
implanted via incision 3 (medial). The electrodes implanted
were bipolar suture-type electrodes (Loeb and Gans 1986),
with each pole made by stripping the distal 3 mm from Teflon-
coated, multi-stranded, stainless-steel wire (AS-631; Cooner
Wire, Chatsworth, CA). The two bared wire ends were tied
together with a square knot of suture (Ethibond 3-0) in a
staggered configuration such that the bared ends were 6 mm
apart. They were dragged into the muscle by the suture and
tied loosely so that the two contacts were oriented parallel with
the fascicles. The EMG leads were passed subcutaneously to a
sagittal incision across the vertex of the skull. A skull pedestal
was built up from dental acrylic anchored by stainless-steel
screws. It incorporated a bracket for fixing the head during the
experiments and a multipin connector to which the ends of the
EMG leads were soldered.

Behavioral training and data collection resumed 1 week
after surgery and continued for approximately 6 months of
daily sessions. After termination of the experiment, the
location of each implanted EMG electrode was confirmed by
autopsy. In fact, two of the eight electrodes were apparently
incorrectly implanted. The electrode intended for the triceps
medial head was actually recovered from the medial portion
of the triceps long head, near the interface between the medial
and long heads of the triceps. The electrode intended for the
extensor carpi radialis longus was recovered from extensor
carpi radialis brevis.

2.2. Behavioral paradigm

For all behavioral training and recording sessions, the monkey
was seated in a custom-designed chair with its head fixed in
a natural, midline posture. The monkey’s right forearm was
strapped to a pivoting arm manipulandum which had its center
of rotation aligned with the elbow joint (figure 1(B)). The
position of the trunk was controlled to minimize the use of
shoulder or trunk muscles. The arm posture was similar to
that used in most horizontal planar arm movement tasks (e.g.,
Georgopoulos (1986)), with the upper arm abducted about 70◦

with respect to the trunk. The subject worked in a darkened
room to reduce distractions, but could be monitored by an
infrared video camera. Throughout the workspace the animal
had a clear view of an illuminated orange LED at the tip of the
manipulandum aligned approximately with its index finger.

The animal’s task was to flex and extend its forearm such
that the orange LED pointed to one of two green target LEDs
fixed to the table at 110◦ and 70◦ elbow flexion, respectively,
and to hold at that position until instructed to move again.
Alongside each green target LED there was a red status
LED (R1 and R2) that designated when the arm was aligned
within the target window (typically ±3◦). If the movement
overshot the target window or took longer than the allotted
time, both LEDs turned off momentarily to indicate an error.
Before the next trial could begin, the arm had to be held
in the target window for a randomized hold period (0.5–1s)
to prevent anticipation. The current target and status LEDs
were then extinguished and the other green target LED was
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illuminated. Correct trials were signaled by an audible tone
and the rewarding of the animal with a small amount of water
to reinforce the correct behavior. Incorrect trials were signaled
by blinking off the green and red LEDs and by withholding
the water reward. To ensure that the subject was motivated in
the task, water bottles were removed from the monkey’s home
cage 24 h prior to any experimental session. Body weight and
general health were monitored daily to safeguard the well-
being of the animal. The animal was given water and fruit ad
libitum after the recording session.

During each movement sequence, the manipulandum
passed through a predefined ‘torque window’ at 25% of the
requested excursion to the illuminated target. At this point, a
10 ms torque pulse (APEX 40 Compumotor; Parker Hannafin
Corp., Rohnert Park, CA) could be applied to perturb the
movement. The direction of the torque pulse was defined as
assistive if it acted in the direction of the movement underway
or resistive if it acted to oppose the movement. The amplitude
of the torque pulse was selected such that it altered the success
rate of the task initially (necessitating a change in movement
strategy in order to receive rewards) but still permitted the
animal to develop a strategy that was successful for most
trials. Actual torque amplitude was increased gradually from
0.8 N · m during initial training sessions to 1.62 N·m during
later sessions. The probability of each type of perturbation
(unperturbed, resistive or assistive) was pre-specified for each
block of 150–200 trials. Consecutive blocks with differing
probabilities could be given without interruption to look at the
process of modifying the strategy as the animal became aware
of the changed probability.

In a given experimental session, the subject generally
started with around 20 unperturbed trials in each direction.
This served two purposes: first, to re-familiarize the animal
with the task, and second to allow the muscle to ‘warm-
up’ and reach a potentiated state. It has been shown that
muscle contractile properties are significantly different before
potentiation (Brown and Loeb 1999). The duration of a session
(typically 60 min) was limited by the attention span of the
animal rather than any apparent muscle fatigue.

2.3. Data collection

EMG signals were differentially amplified (ACamp; AC
Instruments Inc., Seattle, WA), bandpass filtered (100 Hz–
2 kHz), full-wave rectified and integrated into discrete 2 ms
bins (Pulsed Sample/Hold Integrator PSI-1, Bak Electronics,
Mt. Airy, MD; Bak and Loeb 1979) that were digitized
synchronously with the clock to this bin integrator. Angular
position was measured by a potentiometer in the rotating
joint of the manipulandum, and an accelerometer measured
tangential acceleration at the distal end of the manipulandum.
Vertical and horizontal forces were measured by strain gauges
affixed to the manipulandum between the arm cast and the rotor
of the torque motor. Control of LEDs, torque perturbations and
rewards, on-line monitoring of data collection and storage of
data for later analysis were performed by a Pentium PC using
real-time data acquisition software (REX; Hays et al 1982).
Data from each trial were collected from 200 ms preceding

initiation of the movement to 100 ms following either an
error signal (i.e. overshooting the target window or exceeding
allotted time) or successful completion of the movement and
hold. Data were analyzed in Matlab (Mathworks, Natick,
MA). EMG signals were smoothed with a 10 ms moving
average window and baseline noise was subtracted. For some
analyses, EMG data from multiple trials were averaged after
aligning the records at the time at which the manipulandum
entered the torque window.

In order to compare movements made at different speeds,
we measured the elbow velocity that occurred at the time of
peak acceleration. This epoch tended to occur between −30
and −20 ms relative to the torque window for most trials.
Peak velocity was not analyzed because it tended to occur
roughly 50 ms after the torque window, when it might have
been modified by a perturbing torque. Peak acceleration was
tightly correlated with peak velocity when unperturbed trials
were examined.

2.4. Quantification of reflex component of EMG

To examine changes in reflex modulation, average EMG
activity during the reflex epoch was quantified. This epoch
was defined as the period of time from 10 to 100 ms after
perturbation onset. This window was chosen because the
shortest-latency reflexes (M1) in monkeys were shown to occur
at a latency of 10–12 ms after perturbation (Lee and Tatton
1975), while voluntary responses occurred after 100 ms (e.g.,
Nakazawa et al (1997)). Changes in the background level of
activity in a motor pool can produce changes in the magnitude
of the recorded reflexive EMG activity even if the synaptic
input responsible for the reflex does not change (Stein and
Capaday 1988). Therefore, EMG activity between −80 and
0 ms was also averaged. The epoch during the possible torque
pulse was not analyzed because of the possibility of electrical
artifacts from the torque motor.

The modulation of reflex epoch EMG activity was
examined only in the medial region of triceps long head
(TMeLo) for two reasons. Its signal appeared to be
most representative of the whole muscle’s activity (see
musculoskeletal model design below and the discussion
section), and it produced the largest long-latency reflex
response (i.e., M2 and M3 response latencies, typically
occurring 50:80 and 80:100 ms after perturbation, Yamamoto
and Ohtsuki 1989). The latter point is important because
M2 and M3 reflexes may be associated with a supraspinal
pathway (Lee and Tatton 1975, Marsden et al 1972) and have
been shown to be modulated according to the task performed
(Nakazawa et al 1997); thus, a change in this activity is most
likely to reflect an adaptive strategy. While studies have
shown that short-latency, M1 responses can be modulated,
these changes require weeks to appear (Wolpaw et al 1994).

Changes in movement and muscle activity were examined
within a single session and also over many sessions. General
trends were determined by applying a moving average to
the measured parameters. Values were also grouped based
on the type of perturbation applied during that trial; for
example, all extension-direction, resistive-perturbation trials
in a single session were grouped and analyzed for extensor
reflexes.
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Figure 2. (A) Schematic representation of the general hierarchy of physiological processes and the models used to study them. Muscle
torque drives the forearm skeletal dynamics resulting in changes in the angle of the forearm that are fed-back to both higher levels. For
example, joint angle and velocity affect the force–length and force–velocity relationships in muscle mechanics and contribute sensory
feedback that may generate reflexive changes in activation. (B) To calibrate the model, EMG signals from unperturbed trials were scaled
linearly to drive activation of the muscles. The scaling factor was adjusted iteratively to minimize the sum of the squared differences
between position at the termination of the simulation compared to experimental data (see figure 5). (C) To compute the maximal torque that
each muscle could contribute to the task, its kinematics were set to the experimentally observed trajectory and activation was set to maximal
(see figure 6). (D) To examine effects of intrinsic muscle impedance without reflexes, EMG from unperturbed trials was used both with and
without perturbations, with changes in torque and kinematics being compared (see figure 3). (E) To quantify the effectiveness of reflexes in
individual muscles, we compared the muscle torques produced by activation derived from EMG recorded during unperturbed versus
perturbed trials (see figure 4) while driving the kinematics with the recorded arm trajectories. (F) To determine the effects of reflexes on
overall task performance, we evaluated the kinematics produced by the unperturbed and perturbed activation patterns (see figure 11).

2.5. Musculoskeletal model design (figure 2(A))

A musculoskeletal model of the Macaca mulatta arm was
constructed to simulate the performance of the task by the
subject monkey. The elbow was modeled as a single degree-
of-freedom joint; supination/pronation torque was ignored as
it was unnecessary for this task and such motion was prevented
by the cast. The model was constructed using Matlab 5.3 and
its associated simulation module, Simulink 3.0 (Mathworks,
Natick, MA). The model consists of a segment dynamics
element that describes the motion and inertial properties of
the forearm and muscle/torque-generating elements that are

driven by the eight recorded EMG signals. The general
structure is based on a hierarchical model of motor control
consisting of three levels (figure 2(A); Loeb et al 1999). The
configuration of model inputs and outputs varied depending
on the question being addressed; specific configurations are
described later. The highest level (sensorimotor) generates the
input signals (either the recorded EMG data or preset values)
that drive the muscle mechanics model. The kinematics of the
forearm drive the length of each musculotendon element; these
data are obtained from the recorded joint angle or fed-back
from the model of skeletal dynamics at the lowest level of the
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Table 1. Macaca mulatta muscle morpohometry used to create the elbow joint model. Positive moment arm indicates that muscle acts in the
flexion direction, while negative moment arm indicates extension direction.

Muscle Muscle Fascicle Tendon Pennation Moment
name Abbr mass (g) L0 (cm) LT

0 (cm) angle (◦) arm (cm)

Brachialis B 19.7 4.3 2.9 – 1.5
Brachioradialis Br 24.2 11.1 3.6 – 3.5
Biceps long head BL 35.1 5.4 8.8 – 3.2
Biceps short head BS 22.0 6.6 5.7 – 2.5
Extensor carpi radialis longus ECRL 13.1 5.7 10.0 – 2
Dorsoepitrochlearis De 11.9 5.8 4.4 – −1.35
Triceps lateral head TLa 44.7 4.3 9.3 21 −1.8
Triceps long head TLo 25.5 3.8 9.5 31 −2.15
Triceps medial/long head TMeLo 47.6 4.2 3.2 18 −1

hierarchy. The skeletal dynamics model accepts and sums the
muscle forces, converts them to signed torques (positive forces
corresponding to flexion- and negative forces to extension-
direction torque) and computes the kinematics of the forearm
based on the rotational inertia:

α = τtotal/Iforearm = (τmuscles + τperturbation)/Iforearm (1)

where α is the angular acceleration of the forearm segment, τ is
the torque about the elbow joint (torque in the flexion direction
is assigned a positive value) and I is the inertia. Inertia of the
forearm was calculated by summing inertia about the axis
of rotation for both the animal’s forearm and hand and the
manipulandum/torque motor rotor. Inertia of the forearm and
hand was predicted using a regression based on the length of
each segment and the animal’s total mass (Cheng and Scott
2000). The total torque acting on the forearm consists of that
produced by the muscles (active plus passive tension times
moment) plus experimentally applied torque pulses used to
perturb the voluntary movement. Note that this analysis
ignores viscoelastic properties of the skin and joint, which
were not available but are often assumed to be negligible for
such proximal joints operating near the middle of their range
of motion.

The muscle + tendon models consisted of Simulink blocks
created by a Matlab modeling software package called Virtual
Muscle (Cheng et al 2000). See table 1 for specific values
describing the morphometry and contractile properties of each
muscle (derived from Cheng and Scott (2000)). Each block
requires length and activation as inputs and generates total
muscle force as an output. Each muscle block consisted of
three interacting elements: a contractile element with active
and passive viscoelastic properties, a series-elastic element
representing the tendon and aponeurosis for the muscle and
a muscle mass element with inertial properties. The passive
viscoelastic and series-elastic elements both act on the muscle
mass to prevent instabilities from arising within the muscle.
The contractile element has realistic behavior with respect
to force–length, force–velocity, activation rise and fall times,
yield and sag as measured and modeled in feline muscle
(Brown et al 1999). The series-elastic element represents
a lumped model that groups the tendon with the aponeurosis;
this has been shown experimentally to be reasonable (Scott
and Loeb 1995). The model of the tendon and the interaction
between the contractile element and the tendon have been
described elsewhere (Loeb et al 1999).

Maximal fascicle length (Lmax) was assumed to be
1.3 times optimal fascicle length (L0); this measure is used in
the model to scale the amount of elasticity in parallel with the
contractile element (Brown et al 1996). Muscle path lengths
were set such that for elbow flexors the fascicles were at L0

when the elbow was at 70◦ flexion and for elbow extensors
at 110◦ flexion. This presumes that each muscle operated
over the ascending limb of its force–length curve (Goslow
et al 1977). These assumptions were made to attenuate
passive muscle elasticity over this range; we felt this was
reasonable because there is little passive tension produced by
the contractile element even at Lmax (7% of maximal isometric
force [F0], Brown et al 1996); in rapid, small-amplitude
movements, active muscle viscosity is far more significant than
passive muscle elasticity. For computational efficiency, each
musculotendon element was modeled using a single feline
slow-twitch fiber type (Cheng et al 2000). Initial testing
indicated that incorporating multiple fiber types and motor
units in the muscle models greatly increased simulation time
but did not significantly change results in this paradigm (but
see the discussion section).

Each musculotendon element acted on the segment
through a fixed moment arm. This assumption appears
reasonable because moment arms as measured in human
elbow muscles do not change greatly over the limited range
of movement modeled (Pigeon et al 1996). For movements
from 70◦ to 110◦ in the human elbow, brachioradialis moment
arm changes the most, by approximately 15%, while all other
moment arms remain fairly constant. Static Macaca mulatta
elbow muscle moment arm measures were obtained from a
single animal, with the elbow at 90◦ flexion (see table 1).

As the muscle model itself was designed to ignore effects
of pennation, some adjustments were made in the case of three
muscles with significant pennation angles (i.e., over 10◦ (Zajac
1989, Veeger et al 1997)). For the three heads of the triceps,
force output was scaled by the cosine of the pennation angle
at 90◦ elbow angle to capture only the vector of force acting
parallel to the line of action of the musculotendon element.
Fascicle length changes from movement of the elbow joint
were also scaled by the cosine of the pennation angle.

Activation of each musculotendon element was driven
by recorded EMG values, normalized to a neural activation
level between 0 and 1 (described in a following section).
Adaptations to the model were required to deal with
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Figure 3. The mechanical impedance of the musculoskeletal system
causes muscles to generate different torques when the same
activation pattern is run with different kinematics (see figure 2(D)).
In this example, the EMG recorded from an unperturbed trial was
used to activate a muscle model operating under the unperturbed
kinematic conditions (solid line) and under the perturbed kinematics
(dashed line), resulting in a preflex torque difference between them
(shaded region).

shortcomings in the EMG recordings. First, the triceps medial
head was not properly implanted. Instead, the electrode
was implanted in the medial region of the triceps long head,
although it recorded distinctly different modulation of EMG
from the other long head site under some circumstances (see
figure 5). To account for this, the EMG signal from the
misimplanted electrode was used to drive a muscle that had
the morphometric properties of the triceps medial head but
also included half of the PCSA of the triceps long head (this
combined muscle is abbreviated as TMeLo). Second, the
ECRL electrode was implanted in the extensor carpi radialis
brevis (ECRB). Although ECRL is usually considered to
contribute only minimally to elbow flexion (Salmons 1995),
we measured a significant moment arm about the elbow joint
(2.0 cm, see table 1). The EMG signal from ECRB was used
to drive the model ECRL based on the assumption that they
would be similarly modulated, but we do not know of any data
supporting or refuting that assumption. Finally, brachialis was
not implanted. In our model, brachialis was driven by the
EMG signal recorded in brachioradialis; this is justified by the
observation that during isometric conditions, these two muscle
were shown to have linearly correlated levels of EMG activity
(Buchanan et al 1989). The validity of these assumptions and
modifications is examined later (see the discussion section).

2.6. Musculoskeletal model calibration (figure 2(B))

Recorded EMG and kinematic data were used as inputs to
drive each simulation trial of the forearm movement. Activity
of each musculotendon element was determined by linearly
scaling the EMG envelope recorded for each muscle during
the behavioral trial. Because scaling by maximal voluntary
contraction (e.g., Soechting and Flanders (1997)) cannot
be used in non-human subjects, we iteratively adjusted the
scaling factor for each muscle independently until endpoint

accuracy was maximized based on least-square residual error
(e.g. figure 5(E)) for all the calibration trials from several
sessions over the course of the data collection period. A
single set of scaling factors was used throughout all simulation
analyses. Residual discrepancies (as discussed below) were
used to identify potential flaws in the recorded data and the
muscle models that would otherwise be buried as untested
assumptions in the interpretation of the results.

2.7. Task differentiation of synergistic muscles (figure 2(C))

To identify functional differences between apparently
synergistic muscles, the maximal torque-generating capacity
of each muscle during the flexion- and extension-direction
movements was determined. Musculotendon elements were
maximally activated, and kinematics were driven by the
position signal recorded in the behavioral trials. Torque output
of each muscle was simulated (see below and figure 6(B)).

2.8. Movement speed and impedance (figure 2(D))

We examined changes in energy consumption and intrinsic
muscle impedance as movement speeds changed over the
sessions. Simulations were run using data from the
unperturbed ‘warm-up’ trials from each session, thus isolating
intrinsic muscle viscoelasticity from any reflex effects (see
below and figure 3). These trials were chosen to represent
changes in the ‘default’ strategy over all sessions for three
reasons. First, because data were recorded before the first
perturbations for that session, these data were indicative of
the long-term strategy adaptations acquired by the animal,
as opposed to adaptations specific to the varying blocks of
perturbation types within a session. Second, we hoped to
avoid inconsistencies resulting from the independent changes
in EMG and force with fatigue (Bigland-Ritchie et al 1983).
Finally, the motivation of the animal often declined throughout
a session; performance and error rates later in a session could
become inconsistent.

To compute muscular energy consumption, we applied the
function used previously in Loeb et al (1999), which is adapted
from Schutte et al (1993). Briefly, the energy consumed by the
two muscles is based on the mechanical power generated by
the muscles and the heat generated by the muscles. The heat
generated is based on the sum of the maintenance heat and the
heat generated by shortening and lengthening of the muscle.

h = (0.7chFL(L) + 0.3ch)
∗act∗R

+

{−α∗V ∗FL(L)∗act∗R, when V � 0.204
(0.35V − 0.035)FL(L)∗act∗R, otherwise

(2)

where ch is a constant, determined to be 0.07, FL(L) is the
normalized force–length curve, act is the muscle activation,
R is the recovery heat constant, determined to be 2.5, α is a
constant, determined to be 0.16 + 0.18 Factive (muscle) and
V is the velocity of the muscle normalized to units of optimal
fascicle length (L0 s−1).

Intrinsic muscle impedance, i.e. ‘preflexes’ (Brown and
Loeb 2000b), were quantified by finding the difference
between torque produced following a perturbation and the
nominal torque produced with the same muscle activation
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(A) (B)

(C)

Figure 4. Technique used to isolate the effects of reflex-induced EMG. (A) EMG recorded from TMeLo in an unperturbed trial was
combined with (B) EMG from the same muscle but with a perturbation applied. (C) The composite of the two records used the EMG from
the non-reflex epochs in the unperturbed trial and the reflex-epoch in the perturbed trial (shaded portions in (A) and (B)). This technique was
used to minimize the effects of variability between trials and to eliminate the effects of any voluntary responses.

pattern but without a perturbation (figure 3). This torque
measure has been labeled a ‘preflex torque’. In this example,
the torque pulse assisted the flexion movement being produced
voluntarily. The preflex has a net extensor effect resulting from
the reduced torque of the more rapidly shortening flexors plus
the increased torque of the more rapidly stretched extensors.

2.9. Contribution of reflexes to controlling perturbations
(figures 2(E), 2(F) and 4)

Torque output was compared from simulations driven by
EMG from unperturbed and perturbed trials to assess the
effects of reflex-induced EMG. Kinematics were from data
recorded in unperturbed trials. Activation for perturbed
simulation trials was derived from a composite of EMG
activity from the unperturbed trials substituted during the
reflex epoch (10:100 ms) by the EMG levels from perturbed
trials (see figure 4 and below). This technique was used to
eliminate any changes in prestimulus activation as a result
of exposure to the perturbations and to remove the effects of
any post-stimulus voluntary adjustments, which occur with
a minimal latency of 100 ms (e.g., Nakazawa et al (1997)).
No perturbation was applied during these simulations, as the
intent was to assess changes in torque produced only by
reflex EMG responses, not preflexes. The contributions of
reflexive EMG independent of any preflexes was taken to be
the difference between torque produced during the simulation
of unperturbed and unperturbed/perturbed composite EMG
(in fact, the kinematics of the actual perturbed trajectory result
in somewhat different reflex torques).

The effects of reflex-induced EMG responses on arm
endpoint trajectories were also examined in the presence
of perturbations. As above, unperturbed and composite
unperturbed/perturbed activation was used. Musculotendon
lengths were fed-back from simulated kinematics (figure 2(F)).
Any difference between trajectories simulated with
unperturbed and unperturbed/perturbed composite EMG was
attributed to the contributions of reflexes.

3. Results

3.1. Estimating muscle torques from recorded EMGs
(figure 5)

The force calibration method described above was used to
predict the torque produced by each muscle individually.
Averaged EMG and kinematic data illustrated in figure 5
are characteristic of sessions later in the data collection
period (approximately session 15 and on); the earlier trials
are discussed in a following section. Note that while
only eight EMG signals were recorded, a total of nine
muscles were simulated; this is because muscle activity
recorded from brachioradialis was also used to drive the
modeled brachialis muscle. The net predicted torque is
proportional to the predicted acceleration (figure 5(C), solid
lines). Integrating once produces the predicted velocity
(figure 5(D)) and again yields position (figure 5(E)).
Qualitative discrepancies between predicted and observed
kinematics were particularly large during periods of positive
(flexor) acceleration in both tasks. The velocity and position
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(A)

(B)

(C)

(D)

(E)

Figure 5. Calibration of musculoskeletal model for flexion- (left column) and extension-direction (right column) movements. (A) Averaged
EMG signals for each muscle (extensor muscle EMGs and torques shown as negative values), which were then scaled by an optimized set of
gains to generate activation signals for the muscle models (see the materials and methods section). (B) Force outputs of the muscle models
were converted to torques. (C)–(E) Kinematics (acceleration, velocity and position, respectively) predicted by the model (solid lines) were
compared with observed kinematics (dashed lines) to determine goodness of fit for the calibration.

trajectories show what appear to be smaller effects, but note
that the calibration method forces the simulations as a whole
to converge on the correct final position at zero velocity. See
the discussion section and figure 13 for further analysis.

For elbow flexors used as agonists in the flexion task, well-
defined EMG bursts in biceps long (BL), biceps short (BS) and
brachioradialis (Br) began at −100 ms and ceased abruptly
between −10 and +10 ms. Unexpectedly, acceleration of
the forearm (figure 5(C), the dashed line in the left column)
outlasted the EMG activity by 70–90 ms; a more reasonable
value based on the delay inherent in the model of muscle
activation would have been 50 ms. Antagonist activity at the
end of the extension task was observed primarily in BL during
the interval +5 to +150 ms; BS and Br were largely quiescent

during the braking phase. Deceleration at the end of extension
also outlasted the elbow flexor activity by 110 ms (figure 5(C),
the dashed line in the right column).

Extension movements were characterized by a lower
overall level of muscle activity and lower accelerations and
peak velocities. Agonist phase activity in elbow extensors
appeared to involve TMeLo almost exclusively and occurred
during the interval −120 ms to +20 ms. TLa and TLo showed
only minimal agonist activity during the extension task, despite
their strong contribution to braking the flexion movement. The
extensor-ward acceleration of the forearm outlasted extensor
muscle activity by only 50 ms. Braking activity by the elbow
extensors at the end of the flexion task was less crisp and was
accompanied by cocontraction of the flexors suggestive of a
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(A)

(B)

Figure 6. (A) Ratio of agonist epoch EMG activity to antagonist epoch activity for three elbow flexors versus session number. A higher
ratio indicates that the muscle has a greater bias for activity during acceleration of flexion-direction movements, as opposed to during
braking of extension-direction movements. BS (solid lines) and Br (dashed lines) muscles had a relatively greater bias for the acceleration
task, while BL (dotted lines) had a relatively greater bias for the braking task. BS and Br bias also increased over time. (B) Predicted torque
(relative to maximal isometric torque) generated by each muscle when maximally activated over the course of flexion- and
extension-direction movements. Torque decreased during flexion-direction movements as muscles were shortening during the movement.
BL fascicles shortened the fastest due to its architecture; consequently, the force decrease was greater. Conversely, BL fascicles lengthened
fastest during extension-direction movements, thus the force increase caused by the lengthening was greatest. Positive and negative
acceleration values were used to delimit the agonist and antagonist epochs, respectively (shaded regions).

triphasic burst pattern. Dorsoepitrochlearis (De) was generally
active throughout the entire movement, while triceps long
(TLo), triceps lateral (TLa) and triceps medial/long (TMeLo)
had somewhat more phasic activity. The deceleration at the
end of flexion (figure 5(C), the dashed line in the left column)
outlasted the elbow extensor activity by approximately 50 ms,
consistent with the fall time of the muscle model.

3.2. Task-dependent differentiation of synergistic muscles
(figure 6)

Interestingly, the synergistic elbow flexors appeared to be
recruited differentially depending on whether they were used in
an agonist (accelerating) role or an antagonistic (braking) role.
As described above (figure 5), BL, BS and Br EMG signals
were strong during the agonist epoch of flexion movements,
but only BL was significantly active during the antagonist
epoch of extension-direction movements. These kinds of task-
specific recruitment are particularly powerful constraints for
the process of scaling EMGs to account for torques across all
tasks. To quantify these differences in levels of activity, we
computed a ratio of average agonist EMG signal (−120:70 ms
in flexion trials) to the average antagonist EMG signal
(50:270 ms in the subsequent extension trials) for each elbow
flexor muscle. Figure 6(A) shows these ratios and trend lines
for 35 successive sessions of the unperturbed tasks. The

tendency toward task-dependent selective recruitment was low
at first in all muscles and stayed low for BL but grew steadily
in Br and BS, which decreased their contribution to braking as
the animal became more practiced in the extension task.

To differentiate the functions of synergistic elbow flexors
during the two directions of movement, their force producing
capabilities over the course of the ballistic movement were
modeled. Figure 6(B) shows the predicted force produced
by each musculotendon element under constant maximal
activation as the arm is driven through both flexion- and
extension-direction movements. As the forearm moves in the
flexion direction, the shortening of the elbow flexors reduces
their force-generating capabilities as a result of both the force–
length and force–velocity dependences. Conversely, as the
muscles lengthen during the rapid extension movement, they
are able to produce forces greater than during a maximal
isometric tetanic contraction (F0). These effects were largest
in both directions for BL, whose relatively short fascicle length
magnified the effects of joint angle changes at the sarcomere
level. This effect can be quantified for and compared among
muscles by computing the ratio of their moment arms (MA)
to their fascicle lengths (Lf): BL = 3.2 cm/5.4 cm = 0.6,
BS = 2.5/6.6 = 0.38, BR = 3.5/11.1 = 0.31. At the beginning
of the flexion movement, all elbow flexors are able to produce
an amount of force equal to their F0, because fascicle lengths
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Figure 7. (A) Peak acceleration versus session number for flexion-
(circles) and extension-direction (crosses) movements. Peak
acceleration is used as an indication of movement speed (see the
materials and methods section), which had a generally increasing
trend over the study. Gray bars indicate sessions examined in
greater detail below. (B) Change in peak acceleration versus trial
number in session 16. Pie charts indicate the relative amounts of
each perturbation type used for each block of trials within the
session; black indicates the proportion of resistive perturbations,
gray indicates the assistive perturbations and white indicates the
unperturbed trials. This session consisted of equal amounts of each
perturbation type, randomly distributed. Peak acceleration for each
trial is indicated with a cross, while black lines indicate general
trends for each block of trials, using a moving window average.
Note decreasing peak acceleration over the course of the session.
(C) Change in peak acceleration versus trial number in session 31.
For the first three blocks, peak acceleration was higher in blocks
with a higher percentage of resisting perturbations.

were specified to be at LM
0 for this joint angle. The stronger

BL produces a greater initial torque than BS and Br, but as the
arm begins moving and the muscles shorten, all three muscles
produce similar absolute torques. At the beginning of the
extension-direction movement, the muscles are shorter than
their optimal lengths, an effect that is largest for BL. However,
BL benefits more rapidly from the stretching motion during
the extension, causing it to be a more effective brake on this
phase than the other two flexors. As the monkey became more
familiar with the task, he appeared to be taking advantage of
this biomechanical detail to improve efficiency.

3.3. Movement speed and impedance (figure 7)

In order to determine whether ‘default’ movement velocity
changed over time, we computed the mean peak acceleration

for the 15 unperturbed ‘warm-up’ trials at the beginning of
each of the 35 sessions (figure 7(A)). The trend lines show a
gradual increase for both movement directions. Thus, before
the animal was exposed to any perturbations in a given session,
initial movement speeds tended to increase over time. The
maximal allotted time to complete the movement did not
change over these sessions, so the animal was not explicitly
required to change its movement speed. Perturbation sizes did
increase over time, however, so the change in movement speed
may have been a learned response to cope with the increasingly
strong perturbations that the monkey came to expect (see the
discussion section).

In general, movement speeds decreased within individual
sessions. Figure 7(B) shows the trend for session 16, which
included ∼1000 trials with equal probabilities of resistive,
assistive and no perturbations. Figure 7(C) shows that the
monkey adjusted his strategy abruptly during session 34 when
the distribution of the perturbations changed. The addition
of 90% resistive perturbations at the beginning caused an
immediate decrease in peak acceleration. The next shift
from resistive to assistive perturbations produced a further
abrupt decrease in acceleration that was reversed when the
perturbations switched back to resistive; acceleration again
dropped when some assistive trials were added back.

3.4. EMG activity accounts for movement speed, mechanical
impedance and energy cost (figure 8)

We picked three sessions in which there were long series of
unperturbed extension trials with consistent but substantially
different peak velocities and accelerations. Extension
movements were selected in order to avoid confounding factors
related to the relatively poor fit of scaled flexor EMG data
to account for flexion kinematics. The EMG records from
these trials were averaged and used to drive the model arm
during unperturbed and resistively and assistively perturbed
simulations. The unperturbed accelerations of the forearm
are illustrated in figure 8(A). The EMG data from session 1
were recorded before the animal had been exposed to
perturbations for the first time; movements were not as brisk as
in later sessions and EMG activity was attenuated. The larger
accelerations recorded in sessions 16 and 34 were associated
with higher EMG levels, which resulted in higher predicted
acceleration and energy consumption (figure 8(B)).

Simulations with perturbations indicated that the higher
energy strategies were more effective at minimizing the
kinematic effects of the perturbations even in the absence
of reflexes. Figure 8(C) shows the trajectories with and
without perturbations and predicts the mean angular deviations
of the perturbed trajectories at the time when the arm was
expected to be in the target window (vertical gray bars at
150 ms after the perturbation window). The medium energy
utilization strategy (figure 8(C), middle) from session 16
reduced the mean perturbation error from 4.95◦ for the low-
energy strategy to 3.99◦. The high-energy utilization strategy
(figure 8(C), bottom) resulted in the smallest endpoint error
(3.43◦), almost sufficient to stay in the target window without
reflex contributions. Preflex torque (computed during the
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(C)

Figure 8. (A) Predicted acceleration versus time for three extension-direction trials from sessions 1 (solid lines), 16 (dotted lines) and 34
(dashed lines). Later sessions produced faster movements. (B) Energy consumption versus time for the same three sessions. The later, faster
movements were more energy intensive. (C) Predicted trajectories for the same three sessions under resistive (dashed lines), assistive
(dotted lines) and unperturbed (solid lines) conditions. Gray bar indicates the time when the hand entered the target window. Error is
defined as the mean deviation in hand position caused by the perturbations, relative to the unperturbed trajectory at the time when the hand
entered the target window. The faster, more energy intensive movements of the later sessions were affected less by the perturbations,
resulting in a lower amount of error (see the text).

window 10:20 ms after the perturbation) tended to covary with
energy consumption: 0.055 N m for the low-energy strategy,
0.087 N m for medium energy and 0.121 N m for high energy.
(The 0:10 ms epoch could not be examined because preflex
responses in this period were occluded by the perturbation
torque itself.)

3.5. Preflex torque was correlated strongly with muscle
torque and weakly correlated with muscle activity (figure 9)

The preflex torques arise from the intrinsic mechanical
properties of the muscles, which manifest themselves
according to the level of activity in the muscles. We
developed four indices to summarize that activity in order
to determine which correlated best with the magnitude of
the preflex torque. The simulation analysis described above

(figure 8) was performed using the EMG data averaged from
the ‘warm-up’ trials for all sessions. The preflex torque
was computed for both extension and flexion tasks and for
assistive and resistive perturbations; values ranged from 0.02
to 0.14 N m. The activation indices were based on the sum
of the calibrated activation signals, weighted by each muscle’s
maximal isometric force (F0) and moment arm to account for
the different sizes of the muscles. Total activation was defined
as the sum of the agonist and antagonist muscle activities,
while coactivation was defined as the minimum of the agonist
and antagonist muscle activities (figure 9(A)). The second
pair of indices was based on the torque produced by each
musculotendon element (figure 9(B)). The total torque index
was determined by the sum of the torques for agonists and
antagonists, while cocontraction index was the minimum of
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Figure 9. Four different muscle indices were computed to determine which correlated best with preflex impedance. (A) Two indices were
based on the amount of activation used to drive the agonist (solid lines) and antagonist (dashed lines) muscle groups (scaled to the maximal
isometric torque produced by each muscle according to calibration; see the materials and methods section). Total activation (the sum of
agonist and antagonist activation) and coactivation (the minimum of the agonist or antagonist activation) are indicated by the shaded gray
region in the middle column. In the right column, the values for the preflex epoch 10:20 ms after perturbation in each trial (indicated by dark
gray bars in data traces) are plotted on the abscissa with the corresponding measured preflex torques on the ordinate. (B) Similar plots as in
(A) but based on the total or minimal torque rather than activation. Two indices were based on the amount of muscle torque predicted during
the simulated movement. These were quantified either as the total torque (i.e., sum of agonist and antagonist muscle torque) or
cocontraction (i.e., minimum of the agonist and antagonist muscle torque). Total torque appeared to be the best predictor of preflex
impedance, with correlation coefficient r = 0.96.

the agonist and antagonist torques. Best-fit linear regressions
and their corresponding correlation coefficients (figure 9, right
column) indicated that total torque was the best predictor of the
magnitude of the preflex torque. This conforms to the simple
mechanical explanation that the instantaneous impedance
of the limb tends to be dominated by the force–velocity
relationship of active muscle, which produces complementary

and thus additive restorative force changes in both agonists and
antagonists. It would be useful to extend this analysis for a
wider range of perturbation magnitudes that would provide
preflex torques that would be a larger percentage of total
torque. This might also reveal whether the relationship is
nonlinear, as suggested by the scatter plot based on total torque
(figure 9(B)).
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Figure 10. (A) Left column illustrates typical EMG data recorded from both unperturbed flexion-direction movements (solid line) and trials
with resistive perturbations (dashed line) for the eight instrumented muscles. Reflexes appear as spikes or troughs in the EMG traces in
perturbed trials (dashed line). Right column depicts torque predicted by musculoskeletal model with activation derived from perturbed
(dashed line) and unperturbed (solid line) trials from BS and TMeLo. These muscles were selected because they showed the greatest
amount of reflex activity. Other plots depict perturbed-condition EMG data derived from flexion-direction assistive perturbation trials (B),
extension-direction resistive (C) and extension-direction assistive trials (D).

3.6. Use of reflexes to control perturbations (figure 10)

Typical reflex EMG responses to perturbations are shown
in figure 10 (left column), averaged over all similar trials
from a single session (flexor activity plotted upward, extensor
downward). This muscle activity is typical of later sessions,
when the torque pulse was stabilized at 1.62 Nm. EMG
envelopes for the four different perturbation conditions are
plotted (solid lines), superimposed over the EMG activity from
unperturbed trials in the same session (dashed lines).

During the flexion task, resistive perturbations resulted in
brief, large amplitude reflex responses in the flexors BL, BS

and ECRB during the 10:30 ms (M1) interval. Interestingly,
TLo, TLa and TMeLo antagonists also showed an increase
in EMG activity during the same interval; however, this was
followed by a period of about 50 ms when EMG activity was
inhibited in the same muscles. The consequences of these
reflexes on muscle torque are detailed in the right column for
BS and TMeLo, the two muscles that had the strongest reflexes
and the largest contributions to the corrective torques.

Flexion-direction trials with assistive perturbations
(figure 10(B)) resulted in essentially no change in flexor
muscle activity. Extensors TMeLo, TLa and to a lesser extent
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Figure 11. (A) Left column illustrates net muscle torque predicted by the model with activation derived from flexion-direction unperturbed
trials which lack reflex components (solid line) or composite of unperturbed and perturbed trials (dashed line, see the materials and methods
section) which include reflex components, in the presence of a resistive perturbation. The predicted nominal, unperturbed trajectory is
depicted (thick gray line) for comparison. With reflex component included, there is initially a greater amount of torque immediately
opposing the perturbation; later this situation reverses. Right column depicts the trajectories predicted in each of these three conditions.
Error is measured as the deviation from the nominal trajectory at 150 ms, i.e. when the target window is entered (dark gray bar). The
predicted error decreases when reflex components are included. Other plots are as above, but with activation data derived from (B)
flexion-direction assistive perturbation trials or (C) extension-direction resistive and (D) extension-direction assistive trials.

TLo showed excitatory reflexes during the M1 interval, plus a
second burst between 30:90 ms (M2). This resulted in a large
increase in the braking torque predicted for TMeLo, which
would counteract this perturbation.

The extension task was associated with less prominent
reflexes in general. Resistive perturbations produced a long-
lasting excitatory reflex in the extensor TMeLo at M2 latency,
but the predicted torque effect was small (figure 10(C)).
The flexor BL, which was cocontracting to provide braking
torque, was inhibited, but ECRB (wrist extensor with weak

elbow flexion moment) had M1 and M2 excitatory responses.
Assistive perturbations produced strong short- and long-
latency reflexes in BL only. BS participated only weakly
as a brake on extension (EMG barely visible at this scale) and
had no discernible reflexes.

3.7. Reflexive contribution to error correction following
perturbations (figure 11)

The modeled reflex-induced changes in torque were examined
to determine whether they were sufficient to affect movement
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Figure 12. (A) Average amount of reflex activity in TMeLo in resistive trials only (crosses) in a single session versus trial number. Trend of
reflex activity (solid black line), determined by a moving average window, is compared to trend of background activity (dashed gray line).
Pie charts indicate the relative probability of each perturbation type used for each block of trials within the session; black indicates the
proportion of resistive perturbations, gray indicates the assistive perturbations and white indicates the unperturbed trials. This session
consisted of alternating blocks of 90% resistive/10% unperturbed and 10% resistive/90% unperturbed trials. Reflex activity was reduced in
blocks of trials with fewer perturbations. (B) Reflex activity in a session consisting of equal amounts of each perturbation type. Reflex
activity trended upwards over the session while background activity declined.

trajectory. Figure 11 depicts simulation trials where
musculotendon elements were driven by EMG data from trials
both with and without reflexes (see the materials and methods
section). The net torque predicted during a resistively-
perturbed flexion task is depicted in figure 11(A) (left column),
which compares the torques with (dashed lines) and without
(solid lines) the reflexive contributions to the nominal torque
profiles without perturbation (gray lines). Both perturbed
conditions result in the same corrective preflex torques,
which can be seen immediately following the torque pulse.
The reflexes produce an additional small but long-lasting
corrective torque as well, starting about 30 ms after the end of
the perturbation. The consequences of the perturbations and
the preflex and reflex responses can be seen in the trajectories
(right column). The position error at the time when the hand
must be within the target window (vertical gray bar) is 3.44◦

(greater than the 3◦ target window) without reflexes and about
half that with reflexes (1.75◦).

The assistive perturbations during the flexion task
(figure 11(B); error = −3.67◦ without reflexes versus −2.24◦

with reflexes) and the resistive perturbations during the
extension task (figure 11(C); error = 3.61◦ versus 1.34◦) both
produced strong excitatory reflexes in TMeLo (figures 10(B)
and (C)). These reflexes dominated the net torques and
contributed substantially to reducing the trajectory error. In
contrast, assistive perturbations during the extension task
produced weak reflexes in all muscles (except the relatively

weak BS; figure 10(D)) which had little effect on the perturbed
trajectory (error = −3.87◦ versus −3.80◦).

3.8. Independent modulation of background and reflexive
activation (figure 12)

Increases in the background EMG activity of a muscle are
likely to be associated with increases in reflex amplitudes
simply because more motoneurons are already active or
depolarized near threshold (Stein and Capaday 1988). In
order to infer that reflex gain has been modulated by a ‘gating’
signal that does not affect motor recruitment directly, it is
necessary to demonstrate that the reflex amplitudes do not
covary simply with such background activity. We compared
the pre-perturbation (non-reflex epoch defined in figure 4)
and post-perturbation (reflex epoch) EMGs for TMeLo during
the extension task with different probabilities of resistive
perturbation. When only resistive perturbations were applied,
sudden changes in the probability of such perturbations
were accompanied by large and abrupt changes in both the
background and reflex EMG that were often in opposite
directions (figure 12(A)). In another session in which all the
trials had equal probabilities of being unperturbed, resistively
perturbed or assistively perturbed, the background activity
gradually declined while the reflex amplitudes gradually
increased (figure 12(B)). The significance of this observation
must be tempered, however, by the problem noted post mortem
with the placement of this electrode. It is possible that it
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sampled from two separate motor pools (triceps medialis and
triceps longus) that had different but constant reflex gains and
that tended to be recruited differentially.

4. Discussion

Simulations are used only rarely to analyze experimental
data from behavioral studies, probably because of the
difficulty in specifying values for the many parameters
of real musculoskeletal systems (Won and Hogan 1995,
Smith and Humphrey 1991). In contrast, previous work
(Loeb et al 1999) has considered the different properties
of various levels of the neuromusculoskeletal hierarchy and
demonstrated the usefulness of models for understanding their
relative contributions, at least in highly simplified, model
systems. The present study extends model-based analysis to
a mechanically constrained but anatomically real preparation.
We have combined realistic muscle morphometry measures
with activation signals derived from recorded EMG in a
Macaca mulatta performing a pointing task. The task itself
was designed to evoke a rich set of adaptive changes in
kinematic, muscle and reflex strategies in order to illustrate
the utility of this model-based analysis. This paper presents
results from only one animal, focusing on the utility of
model-based analysis of such data rather than on the results
themselves, which must be extended and confirmed in a larger
study.

4.1. Evaluating muscle activity from recorded EMG

Well-constructed musculoskeletal models function as tools
both to interpret the implications of behavioral observations
and to identify potential limitations or sources of error in
experimental techniques. A major goal of this study was
to ‘close the loop’ on our EMG data and muscle models
by determining if they could account for actual kinematic
data. We attempted to record EMG signals from all of the
muscles that could be involved in the task and predicted
their torque contributions using a newly developed model of
muscle activation that captures more of their recruitment and
force dynamics than previously available models (Cheng et al
2000). The simple iterative method used here to identify best-
fit gains for EMG to activation for each muscle can produce
ambiguous results if a large set of values produces similarly
good solutions. That situation is more likely to arise if the
kinematic data set does not include a sufficiently broad range of
behaviors that use different patterns of muscle synergy. In fact,
the best-fit predictions of movement trajectories differed in
some important respects from those recorded from the monkey,
mooting the problem of ambiguity (see joint acceleration plots
in figure 5(C), which reflect net effects of individual predicted
muscle torques shown in figure 5(B)).

In order to determine whether the discrepancies in the
kinematic output of the model reflected inadequacies in the
EMG data or in the muscle model, we ran the model again
using different muscle properties. Figure 13 compares the
kinematics of the observed movements with those predicted
to be produced by these monkey muscles when they were

modeled with mechanical properties derived from cat and
from human experiments. Unfortunately, there is little
physiological data available from monkey muscles. We
assumed that monkey muscles would probably have properties
somewhere between the relatively fast cat muscles and the
much slower human muscles (where speed refers both to
rise and fall times of excitation–contraction coupling and
to the ability to generate contractile force while shortening
rapidly). The human muscle model reduced somewhat the
large discrepancies during the agonist phase of the flexion
task and perhaps during the antagonist phase of the extension
task, both of which depend on the flexor muscles. However,
qualitative discrepancies remained and the phases related to
the extensor muscles started to show new discrepancies. This
suggests that the source of these discrepancies lies in the EMG
data or in the model of recruitment rather than in the values
chosen to represent the physiological properties of the monkey
muscles.

The most obvious source of error in EMG data would be
failure to implant the correct muscles. This study employed
more systematic methods than are usually employed in
monkey behavioral studies, which often rely on percutaneous
insertion of recording wires into only a subset of the muscles
that could contribute to the task. The surgical errors that we
discovered post mortem were surprising but at least they are
known. It is interesting that even though we failed to implant
properly the triceps medial head, an important extensor
(Salmons 1995), the predicted extensorward accelerations
accorded much better with actual acceleration data than did
flexor accelerations, even though there were fewer overt
problems with flexor muscle recordings. The likely reason
is that EMG activity in an elbow extensor, TMeLo, appeared
to be most representative of the activity of the entire muscle.
There was a suggestion of this in the EMG signals before
smoothing, which were less ‘spiky’ than those recorded in
other muscles. EMG from TMeLo tended to be well defined,
with consistent phasic bursts of activity as both an extension-
direction agonist and a flexion-direction antagonist, and also in
its clearly observed reflex activity (figure 10(A)). Conventional
assessments based on signal-to-noise ratios and measures of
electrode impedance, however, did not suggest any problems
with the quality of the EMG data from any of the implanted
muscles.

The kinematic discrepancies suggest that the EMG signals
recorded from the flexor muscles did not accurately reflect
the true activation of the entire muscle group. This problem
may arise from the placement of recording electrodes in
histochemically segregated portions of the muscles (Chanaud
et al 1991) or in only one compartment of a muscle with
neuromuscular compartmentation and differential recruitment
(English and Weeks 1987). If the flexor muscle recordings
happened to be made from relatively fast portions of the
muscles, this would account for both the over-representation
of the initial phases of flexorward acceleration and for the
relatively spikey appearance of the raw EMG signals. Such
a placement would record preferentially the activity of a
small number of relatively large muscle units and would
under-represent the contributions of smaller, slow-twitch units
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(A)

(B)

(C)

Figure 13. Predicted kinematics when musculotendon elements were given properties derived from feline (solid line) or human (dotted line)
muscle fibers. Observed trajectories are displayed for comparison (dashed line). The model of feline slow-twitch muscle fibers had a
contraction rise time of 30 ms (Kernell et al 1983) while human slow-twitch muscle fibers had a rise time of 65 ms (Desmedt and Godaux
1977). Kinematic data displayed are acceleration in degrees s−2 (A), velocity in degrees s−1 (B) and angular position in degrees (C).

that presumably account for the sustaining torque for the
movement (Loeb and Gans 1986). Envelope extraction and
averaging techniques such as employed here and in most such
analyses (e.g., Angel (1975), Gottlieb (1996)) obscure such
problems. This emphasizes the importance of understanding
the underlying neuromuscular architecture of each muscle
in order to determine the number and placement of EMG
channels.

It is also possible that the kinematic discrepancies reflect a
computational limitation of our implementation of the Virtual
Muscle model. The version of Virtual Muscle available for
this analysis made it impractical to construct muscle models
with large numbers of separately recruitable motor units, so the
models consisted of only a single slow-twitch motor unit. This
results in an artificially abrupt recruitment curve that may have
interfered with the ability to predict force output accurately.
An improved version of Virtual Muscle that overcomes this
limitation is now available (Song et al 2008b). Fortunately,
many of the analyses described here are relatively unaffected
by this discrepancy, whose existence and nature would have

gone undetected without the method of ‘closing the kinetic
loop’ to see if the recorded EMG activity actually accounts for
the motor behavior.

4.2. Task differentiation of synergistic muscles

Contrary to the notion of ‘lumping’ synergistic muscles and
muscle heads into single agonist or antagonist functional
groups (Bouisset 1973), there were large and consistent
differences in recruitment of muscles based on the task
required of the muscles. These differences increased as the
animal gained experience and skill at the task (figure 6(A)).
By the final sessions in the data collection period, the ratio
of EMG activity between action and braking roles for Br and
BS was three to six times greater than that observed in BL.
This particular monkey tended to recruit Br and BS almost
exclusively during flexion acceleration of the forearm, while
BL was preferred to brake extension motion. The energetic
advantage of this specialization (figure 6(B)) suggests that
this was an adaptive strategy learned by the animal. This
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conclusion must be tempered, however, by the knowledge
that the EMG signals available from the flexor muscles
in this preparation had demonstrated sampling or modeling
problems. If the slow-twitch motor units in these muscles
were undersampled, it is possible that the specialization could
reflect a departure from the size principle instead. The model-
based analysis suggests that more systematic EMG sampling
and more detailed modeling of these muscles will be necessary
in order to support this attractive hypothesis.

The evolving specialization of muscle function with
practice agrees with the notion that subjects attempt to reduce
the complexity of a new task by reducing the number of
degrees-of-freedom in the solution of the problem (e.g., by
locking their joints or, in this case, by recruiting muscles
synergistically; Bernstein 1967). Only when subjects become
more proficient do they utilize more of the degrees-of-
freedom actually available to the neuromuscular system,
thereby achieving more accurate or efficient performance
(McDonald et al 1989). Without a musculoskeletal model,
or using musculoskeletal models that do not account for the
specific moment arms and musculotendinous architecture of
the individual muscles, we would have had no explanation for
the differential recruitment of the elbow flexors in this task.

Lumping muscles into homogenously recruited ‘muscle
equivalents’ (Bouisset 1973) is a simplification of the
recruitment patterns observed behaviorally. This approach
is commonly used when motor control models are developed
(e.g., Osu and Gomi (1999), Karniel and Inbar (1997)). The
question is whether such an approximation is justifiable; that
is, whether the trade-off between simplicity and accuracy
is deemed reasonable by the needs of the researcher. It
is particularly important not to assume that such simplistic
recruitment of synergistic muscles, whether recorded in a
naive subject or assumed by a naive analysis, actually reflects
an invariant CNS strategy for dealing with ‘overcomplete’ or
‘redundant’ musculature (Loeb 2000).

Differential recruitment of synergistic muscles in previous
studies has been ascribed to their differential actions on other
joints. For example, mono- and bi-articular arm muscles, such
as brachioradialis and biceps brachii respectively, were found
to be used to different degrees depending on the direction of
hand movements (van Bolhuis et al 1998, van Bolhuis and
Gielen 1997). In that case, the differential recruitment was
attributed to the fact that brachioradialis is mono-articular,
hence active only when an elbow flexion was required,
irrespective of arm geometry or desired force direction. The
biceps acts as both a shoulder and an elbow flexor, hence
its activity was best correlated with the direction of hand
movement, as opposed to any specific change in joint angle.
The present study involved only a single degree-of-freedom
movement, for which this explanation is inapplicable. This
raises the question of whether the differential recruitment of
bi-articular muscles was correctly attributed to articularity or
might have arisen because of internal muscle architecture and
the effects of kinematics on economy of force production.

Biomechanists often use anatomical origins and insertions
to deduce the actions of individual muscles. Optimization
criteria such as minimal muscle force (e.g., Seireg and Arvikar

(1973)), minimal muscle stress (e.g., Crowninshield and Brand
(1981)) or minimal energy consumption (e.g., Davy and Audu
(1987)) are then applied to determine a pattern of activation
that differentiates synergistic muscles. The EMG patterns
obtained during a rich set of natural movements provide a
much more direct indication of the motor strategies actually
employed, which may not comport with such limited and
arbitrary strategies.

4.3. Movement speed, impedance and energetics

The increase in movement speed over all sessions (figure 7(A))
was not explicitly required by the task, as time limits for the
completion of the movement did not change between sessions.
One possible reason is that faster movements are somehow
more efficient and/or effective for coping with perturbations
and the monkey learned this strategy over time. Previous
research on skill acquisition suggests that skilled performers
were able to make movements with greater efficiency as well
as speed, as unnecessary movements and muscle activity
declined (Sparrow 1983). In contrast, the musculoskeletal
model indicated that the monkey actually did devote a greater
amount of energy to the task during the later sessions
(figure 8(B)).

Increasing movement speed, although energetically
expensive, appears to be correlated with improved
performance in the face of the brief torque perturbations
used in these experiments. Simulations of the later, faster
sessions proved to be less sensitive to torque pulses, resulting
from the higher mechanical impedance in these movements
(figure 8(C)). The impulse to the arm created by the torque
pulse constitutes a smaller percentage of the momentum in
the arm when it is moving at a higher velocity. Note that
impulse (product of torque amplitude and duration) has the
same units (N m s) as momentum (product of rotational
inertia and velocity). The musculoskeletal model is useful for
examining the effects of movement speed and muscle tone on
impedance without the confounding effects of reflexes because
it permits the application of the unperturbed EMG activity to
the perturbed kinematics.

Higher velocities require higher torques to accelerate and
decelerate the arm, requiring higher levels of muscle activity to
achieve those torques. The intrinsic viscoelastic properties of
active muscle result in instantaneous changes in contractile
force when the length and the velocity of the muscle are
changed such as by a perturbation. This reactive force has
been called a ‘preflex’ because it is a zero-delay response
that precedes even the shortest-latency reflexes (Brown et al
1995). Some studies associate increased preflexes with an
increase in overall electromyographic activity (Lacquaniti et al
1982, Agarwal and Gottlieb 1977, Osu and Gomi 1999). Other
studies focus on the mean level of muscular tension (Joyce and
Rack 1969, Houk et al 1970) or the coactivation of antagonistic
muscles (Hogan 1984) to explain the amount of mechanical
impedance. The higher net muscle torques implied by higher
accelerations do not necessarily translate into proportional
changes in muscle activation because they could be achieved
with more or less cocontraction of antagonists. In this light,
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it is instructive to note that the preflex torque tended to be
predicted best by the total torque produced by the muscles, not
by the cocontraction component or by the weighted activation
signals themselves (figure 9). In a dynamic task, EMG is not
a good indicator of muscle impedance because of the large
effects of velocity on active force generation.

Recently, the phenomenon of signal-dependent motor
noise (Hamilton et al 2004) has been used to explain optimal
control strategies that result in minimization of muscle force
levels (Todorov 2004). The orderly but abrupt recruitment of
motor units with a wide range of sizes causes higher levels of
muscle force to be associated with larger random fluctuations
in those forces. Under conditions where the kinematics result
from the torques of synergistic muscles operating on passive
loads such as inertia, such motor noise leads to kinematic
variability. Under other conditions where antagonist muscles
cocontract, their increased viscoelastic impedance at higher
recruitment levels may counteract the higher motor noise
(Selen et al 2005). The results presented here suggest that this
viscoelastic impedance also provides advantages for dealing
with externally applied perturbations and that the monkey
perceived these advantages to be more important than any
concomitant increase in motor noise. The recruitment model
employed in this study did not include motor noise, but a newer
version of Virtual Muscle (Song et al 2008b) can be driven so
as to simulate motor noise.

While movement speed and levels of muscle recruitment
and energy consumption increased over the entire training
period, they tended to decrease within sessions (figure 7(B)).
The simplest explanation, in the absence of any change
in perturbation probability, is that the animal experienced
fatigue over the course of the 1000 consecutive rapid arm
movements. However, performance did not deteriorate, as
might be expected. Instead, it appeared that the animal came
to rely on more efficient use of reflexes (as demonstrated in
figure 12(B); see below).

In a session comprising blocks of varied perturbation
probabilities, the animal adjusted the peak acceleration
depending on the frequency of each perturbation type
(figure 7(C)). Blocks with a higher frequency of resistive
trials tended to have higher peak acceleration and higher
resultant peak velocity. This strategy is well suited to the
nature of the target window. For example, consider the first
block of 90% resistive/10% unperturbed trials. Essentially,
the animal must initiate and terminate a ballistic movement
within a window of ±3◦. With this perturbation schedule, the
animal can make best use of the target window by deliberately
overshooting the midpoint of the target by a few degrees.
The resistive perturbation then tends to pull the hand back on
target. Similarly, when a block consists of 90% assistive/10%
unperturbed trials, deliberately undershooting the target would
be a similarly adaptive strategy. This interpretation is
supported by examining the angular position of the forearm at
the time when the target window is first entered. Unperturbed
trials sampled from the majority resistive blocks showed
excursions 2–3◦ greater than those in the majority assistive
blocks. This finding parallels strategies used by humans to
cope with probabilistic targets (Favilla et al 1990, Ghez et al
1997).

4.4. The relative contribution of reflexes

Reflexes recorded in TMeLo were modulated according to the
type of perturbation encountered (figure 12). These reflexes
were modulated independently of background EMG activity,
as has been observed in other studies (e.g., Johnson et al
(1993), Dietz et al (1994)). The model-based analysis makes
it possible to quantify the mechanical effects of the reflexes
themselves, independent of the preflexive contributions of
intrinsic muscle impedance. Furthermore, it permits those
reflex contributions to be attributed to individual muscles,
providing a link to the proprioceptive and spinal interneuronal
circuits that presumably underlie those reflexes and their
systematic and independent modulation. Such quantitative
predictions must be tempered, however, by the possible effects
of occlusion on gross EMG signals, which may be different
for asynchronous voluntary activity versus more synchronous
reflexive recruitment (Loeb and Gans 1986).

The specific results described and analyzed here likely
depend on the limited range of experimental conditions
explored in this single animal. Reflexes carried by
oligosynaptic pathways are likely to exhibit threshold effects,
so the absence of reflexes in many muscles under these
relatively weak and brief torque pulses cannot be taken
as an indication of the absence of reflexive projections.
The delays inherent in reflexive responses mean that their
utility will also depend on the timing of the perturbation
during the course of the time-limited task. In addition to
randomizing the sign and probability of occurrence of the
perturbations, it would be useful to consider other magnitudes
and timings of perturbations, but it is not clear that simply
introducing them as additional randomizations would be
appropriate. The gradual optimization of strategies (e.g.
figure 6(A)) and the dependence of strategy selection on
the perceived distribution of probability of occurrence of
all perturbations (e.g. figures 7 and 12) all suggest that the
monkey developed strategies based on maximizing probability
of success across the totality of trials experienced. In
unpublished experiments, we used a scaled-up version of the
apparatus to deliver proportionately scaled perturbations to
human subjects performing a similar task. They also adopted
progressively more successful strategies that depended on
probability distributions, but they reported paradoxically
that they were unable to distinguish even the sign of such
perturbations based on somatosensory information. For
the type of task described herein, subjects appear to use
visual feedback (which is available only after the end of the
movement) for positive or negative reinforcement of strategies
that are explored stochastically rather than analytically. For
other types of perturbations such as continuous force fields,
the nature of learning may be very different.

5. Conclusion

In motor control, the differentiation between intrinsic muscle
stiffness and reflex stiffness (or, more correctly, impedance)
is not a trivial one. It is the relative contribution of these two
components that is central to the distinction between opposing
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theories of equilibrium-point motor control (Asatryan and
Feldman 1965, Bizzi et al 1978). Classical experiments have
variously suggested that reflexes contribute significantly to
stiffness (Sinkjaer and Hayashi 1989, Bennett 1994) or that
they were only minimally effective (Allum 1975, Lacquaniti
et al 1982, De Serres and Milner 1991). We suggest
that accurate modeling studies can help to clarify some
of the disagreement between these conflicting findings.
Such models can identify limitations in design and
shortcomings in execution of experiments and can reveal
the quantitative mechanical implications of the kinematic
and electromyographical data that are collected in behavioral
experiments.
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