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CHAPTER 15

Modeling the potentiality of spinal-like circuitry for
stabilization of a planar arm system

George A. Tsianos', Giby Raphael* and Gerald E. Loeb"*

¥ Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
¥ Advanced Brain Monitoring Inc., Carlsbad, CA, USA

Abstract: The design of control systems for limb prostheses seems likely to benefit from an understanding
of how sensorimotor integration is achieved in the intact system. Traditional BMIs guess what movement
parameters are encoded by brain activity and then decode them to drive prostheses directly. Modeling
the known structure and emergent properties of the biological decoder itself is likely to be more effective
in bridging from normal brain activity to functionally useful limb movement. In this study, we have
extended a model of spinal circuitry (termed SLR for spinal-like regulator; see Raphael, G., Tsianos,
G. A., & Loeb G. E. 2010, Spinal-like regulator facilitates control of a two-degree-of-freedom wrist. The
Journal of Neuroscience, 30(28), 9431-9444.) to a planar elbow—shoulder system to investigate how the
spinal cord contributes to the control of a musculoskeletal system with redundant and multiarticular
musculature and interaction (Coriolis) torques, which are common control problems for multisegment
linkages throughout the body. The SLR consists of a realistic set of interneuronal pathways
(monosynaptic Ia-excitatory, reciprocal Ia-inhibitory, Renshaw inhibitory, Ib-inhibitory, and
propriospinal) that are driven by unmodulated step commands with learned amplitudes. We simulated
the response of a planar arm to a brief, oblique impulse at the hand and investigated the role of
cocontraction in learning to resist it. Training the SLR without cocontraction led to generally poor
performance that was significantly worse than training with cocontraction. Further, removing
cocontraction from the converged solutions and retraining the system achieved better performance than
the SLR responses without cocontraction. Cocontraction appears to reshape the solution space, virtually
eliminating the probability of entrapment in poor local minima. The local minima that are entered during
learning with cocontraction are favorable starting points for learning to perform the task when
cocontraction is abruptly removed. Given the control system’s ability to learn effectively and rapidly, we
hypothesize that it will generalize more readily to the wider range of tasks that subjects must learn to
perform, as opposed to BMIs mapped to outputs of the musculoskeletal system.
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Introduction

Moving limbs in a purposeful manner, whether it is
a simple reaching movement or fine manipulation
of an object, is an elaborate process that requires
sophisticated integration of volitional commands
and sensory feedback. The design of control sys-
tems for sensorimotor prostheses seems likely to
benefit from an understanding of how such control
is achieved in the intact system. Many regions of
the brain participate in this process, but all of their
output signals are integrated in the spinal cord. The
spinal circuitry consists of a variety of reasonably
well-characterized interneurons that are highly
evolved and conserved throughout mammalian
and even vertebrate evolution (Pierrot-Deseilligny
and Burke, 2005). In particular, the large majority
of corticospinal neurons have few or no direct
projections to spinal motoneurons (Rathelot and
Strick, 2009), projecting instead to spinal inter-
neurons where their signals are integrated with
various somatosensory afferents and recurrent
motoneuron signals. Depending on one’s perspec-
tive, any given muscle recruitment can be
described either as the result of a descending com-
mand that has been modulated by segmental feed-
back or a segmental reflex whose gain has been set
by descending commands; given the circuitry, they
are functionally indistinguishable.

A brain—machine interface naturally focuses on
the cortical command signals. Cortical activity
recorded from nonhuman primates during trained
motor behaviors can be correlated with experi-
mental measures of the kinematics or kinetics of
the performance. The decoded cortical signals can
be used to recreate those kinematics or kinetics in
a robotic or virtual simulation of the limb (see
other chapters in this volume). Because of the
mechanical coupling within the musculoskeletal
system, however, similar correlations can be
obtained with a wide variety of measures of the

task (Churchland and Shenoy, 2007). Further, the
input—output relationships shift substantially with
small changes to the task (e.g., changes in limb pos-
ture unrelated to the end-point trajectory being
controlled; Scott and Kalaska, 1997). This suggests
that the dimensionality of neural activity is signifi-
cantly larger than the set of movement parameters
that are hypothesized to be encoded (see
Churchland and Shenoy, 2007). This also indicates
that the correlations do not reflect the coordinate
frame in which the brain normally computes com-
mand signals. Further, these correlations may actu-
ally reflect cortical inputs from higher motor
planning centers (e.g., parietal cortex) and/or
somatosensory feedback and efference-copy
signals from lower centers such as the spinal cord.

Rather than guessing what coordinates the brain
might use and building decoders based on cor-
relations observed, we can start with the known
structure of the biological decoder itself. Fortu-
nately, a fair amount of spinal connectivity is known
(see Jankowska, 1992; Pierrot-Deseilligny and
Burke, 2005). Modeling of musculoskeletal systems
is sufficiently advanced to support the development
of realistic model systems in which the potentiality
of the components can be appreciated. Modeling
tools can be used to gain insight into the spinal
cord’s contribution to various behavioral phenom-
ena such as kinematic performance, stability, energy
consumption, and learning. Alternatively, they can
also give us insight into the extent to which these
aspects need to be specified explicitly by higher
centers or treated as emergent properties of the sys-
tem being controlled.

In previous research, we obtained surprising
results from a realistic model of the spinal cir-
cuitry operating a model of a two degree-of-free-
dom wrist with four muscles (Raphael et al.,
2010). The model consisted of a realistic set of
interneurons whose descending commands were
simple step functions with learned amplitudes.



The model was called a “spinal-like regulator”
(SLR) because it included elements that may
actually be located in supraspinal circuits and
excluded some known spinal interneurons whose
connectivity or roles were less well characterized.
Despite having an oversimplified brain whose
outputs were limited to unmodulated steps,
learning by adjusting one gain at a time rapidly
discovered physiological solutions for a wide
range of tasks. Even with a large number of con-
trol inputs, the simple learning algorithm always
converged rapidly to solutions similar to publi-
shed normal behavior regardless of the random
starting point of the search. This is surprising
because the large number of control inputs would
theoretically create a complex solution space with
many undesirable local minima. The fact that
training always resulted in good performance
implies that the structure of the spinal circuitry
facilitates learning by crafting a solution space con-
sisting of many local minima that are good enough
for many common tasks. Further, details of muscle
activity during the learned behaviors appeared to
be physiological (e.g., minimal cocontraction) even
though muscle activation was not included in the
training criteria. This suggested that the structure
of the spinal cord is predisposed toward metaboli-
cally efficient behavior.

In this study, we have extended this modeling
scheme to a planar elbow—shoulder system to inves-
tigate how the spinal cord contributes to the control
of a musculoskeletal system with redundant and
multiarticular musculature and interaction (Cor-
iolis) torques, which are common control problems
for multisegment linkages throughout the body.

Methods

Simulation environment

The neuromusculoskeletal system shown schemat-
ically in Fig. 1 includes realistic models of muscles,

proprioceptors, and spinal circuitry in conjunction
with a simplified model of the brain. Models of
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individual components have been described in
other publications and are summarized here.

Musculoskeletal model

The musculoskeletal system represents an arm
whose motion is constrained within the horizontal
plane (see Brown and Loeb, 2000). The three-seg-
ment skeleton is made up of torso, upper and lower
arm segments that are linked by hinge-like shoulder
and elbow joints. Each joint is operated by a pair of
antagonist muscles that provide flexion and exten-
sion torques. In addition, a pair of biarticular
muscles provides flexion and extension torques
across both muscles. See Fig. 2 for a detailed
description of the musculoskeletal parameters.

The muscle model used in this study (Tsianos
et al., 2011, in preparation) is a modified version of
virtual muscle (VM) presented in Cheng et al.
(2000). The new muscle model is more computa-
tionally efficient and computes energy consumption
in addition to force over a wide range of stimulation
conditions. It accurately captures the nonlinear
effects of firing rate, kinematics, and fiber composi-
tion on force production and energy consumption.
Tendon plus aponeurosis are modeled as a nonlin-
ear elastic component in series with the contractile
machinery. Under dynamic conditions, such series
elasticity results in substantial differences between
the kinematics of the whole muscle and of the mus-
cle fascicles and spindles, which have significant
effects on force production, energy consumption,
and proprioceptor activity.

Proprioceptor models

Each muscle in our system includes models of
muscle spindles (Mileusnic et al., 2006) and Golgi
tendon organs (GTO; Mileusnic and Loeb, 2009).
The muscle spindle model generates a response
depending on fascicle kinematics and fusimotor
excitation, with separate gamma static and
gamma dynamic control of length and velocity
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Fig. 1. Schematic overview of the neuromusculoskeletal system of a planar arm. Descending commands from the brain model and
proprioceptive feedback from muscle spindle and Golgi tendon organ models project to interneurons in the spinal-like regulator
(SLR). The interneurons integrate this information and send it to the alpha motoneurons that drive the muscles. The brain
model also delivers fusimotor input to the muscle spindles, effectively setting their transduction sensitivity.
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Fig. 2. Musculoskeletal system parameters. The proximal and distal arms have identical dimensions and mass, which is uniformly
distributed over each segment. In the posture shown in the figure, the muscles are arranged symmetrically about the proximal
segment. The monoarticular muscles have one attachment point at the center of the proximal segment and another one 3 cm
away from the joint they actuate. The biarticular muscles attach 3 cm away from the elbow and shoulder joint on the same side
of the proximal segment.



sensitivity, respectively. Although the model cap-
tures both group Ia and II afferent responses, we
used only the Ia response in our system because
we omitted spinal circuitry associated with group 11
feedback (see Raphael et al., 2010). The GTO
model generates a response that represents activity
from an ensemble of group Ib afferents in response
to whole muscle tension.

Spinal cord model

The spinal cord model is composed of classical
interneuronal circuitry described in the experi-
mental literature plus fusimotor control for the
muscle spindles. It includes the following
pathways: monosynaptic la-excitatory, reciprocal
Ia-inhibitory, Renshaw inhibitory, Ib-inhibitory,
and propriospinal interneuronal pathways. These
circuits between a given pair of muscles are
largely defined by their functional relationship,
which can be synergist, antagonist, or variable
depending on task, which we term partial syn-
ergists. The connectivity of these relationships
for each type of interneuronal circuit is described
in detail in Raphael et al. (2010).

Given that the building blocks of the overall spi-
nal network have already been defined, the major
challenge in this study was to determine the func-
tional relationships among the arm muscles to con-
struct the network specific to this system. Although
monoarticular muscles crossing a single joint are
obviously antagonistic, the interaction torques
among joints in the arm make it difficult to intuit
the underlying muscle activity, hence whether and
when a given pair of muscles acts as synergists or
antagonists. Further, the system is kinetically
redundant (meaning that multiple sets of muscle
activation patterns can accomplish the same move-
ment), which further complicates the relationships
among the various muscles.

Kinetics and EMG studies of planar arm move-
ment provide descriptions of muscle coordination
patterns associated with reaching tasks, thus giving
us insight into these functional relationships. We
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used the active torque analysis presented in Graham
et al. (2003) to identify the functional relationships
among monoarticular muscles crossing different
joints. The direction of active joint torques agreed
with monoarticular muscle activity from several
movements presented in Karst and Hasan (1991),
therefore active torque direction was a good indica-
tor of which muscle was being recruited. We found
that although reaching movements typically require
that the shoulder and elbow rotate in opposite
directions, the direction of active torques was often
the same. In fact, all combinations of active joint
torque direction between the two joints were
observed, suggesting that any given pair of muscles
that cross different joints act as partial synergists.
EMG data from Karst and Hasan (1991) were also
used to gain insight into the relationships between
these muscles and the biarticular muscles, whose
individual contributions cannot be deduced with
confidence from net joint torques. We found that
biarticular muscles could be recruited in or out of
phase with the monoarticular muscles that had the
same actions at the joints they crossed, suggesting
that they have partial synergist relationships with
the rest of the set.

In summary, each monoarticular muscle is
modeled as antagonist to the monoarticular muscle
crossing the same joint and partial synergist to both
monoarticular muscles crossing the other joint. Each
biarticular muscle is modeled as a partial synergist to
all muscles in the set, including each other. The over-
all network consists of 340 local projections (e.g.,
afferent and interneuronal pathways) whose activity
is modulated by the brain (see next section). The
local and descending projections are distributed
among 24 interneurons (four classical types for each
of the six muscles) and six motoneurons whose bias
is also set by the brain model (see Fig. 3).

Brain model
The brain is modeled as a task planner that

evaluates performance according to criteria
defined for each task and an adaptive controller
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Input gains Output gains Total x4 muscles
True syn/ant Partial syn/ant + total biarticular x 2 muscles
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Fig. 3. Distribution of gains among the various interneurons and muscles. Gains are distributed into categories depending on
whether they modulate the inputs or outputs of a given interneuron. Each category is subdivided further for monoarticular and
biarticular muscles, as their connectivity with the rest of the muscles differs.

that adjusts its control inputs based on perfor-
mance (see Loeb et al., 1999). The control inputs
(normalized for the range —1 to 1) set the bias of
interneurons and motoneurons (which have sig-
moidal input/output functions) and the gains of
the local projections within the spinal cord. The
learning scheme for the adaptive controller has
been described in detail in Raphael et al. (2010).
Briefly, each control input is initialized at random
within a relatively low range (—0.3 to 0.3) to
avoid instability. The inputs are then tuned
through a simple gradient descent process in
which each gain is sequentially adjusted in the
positive and negative direction and then left at
the value that produces the best performance.
One cycle through all the gains corresponds to
one iteration. The model in this study was trained
for three iterations and the size of the
adjustments was 0.2, 0.2, and 0.1, respectively.
Only three iterations were performed because
they were sufficient for the model to converge
on locally optimal solutions.

Modeled task

The response of a planar arm to a brief, oblique
impulse (100 Nx10ms) at the hand was
simulated, equivalent to ~30Nm extension
torque at each joint. The perturbation was
applied at random between 0.5 and 1.5 s into the
simulation to avoid anticipation and use of
momentum in the opposite direction rather than
spinal reflexes to resist the perturbation. The
gains of the SLR were initially set at random
and adjustments were evaluated according to
quadratic cost (squared deviation of the hand
from the initial position integrated from 0.5s
before the perturbation to 2s after). See Fig. 4
for a schematic overview of the task.

We also tested the response of the system when
adding a modest level of cocontraction (20% acti-
vation to all muscles) to the SLR to simulate the
experimental phenomenon where subjects
cocontract more in the early phase of learning
and to examine the effects it may have on the
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Fig. 4. Overview of the modeled task. An impulsive force (100 N x 10 ms) is applied at the end point of a stationary arm at a
random onset within a 1-s interval. Task performance is measured by integrating the displacement of the arm over two and half
seconds (half a second before the perturbation to two seconds after).

adaptation process. The level of cocontraction
was chosen to be as low as typically adopted by
experimental subjects, which itself is insufficient
to stabilize the arm on its own. To gain insight
into its role once performance converges, we sub-
sequently removed the cocontraction and ran an
additional training session.

Results

Training the SLR without cocontraction led to
generally poor performance (mean=0.091,
SD=0.15) that was often worse than applying
cocontraction alone (SLR gains fixed at zero;
Fig. 5). Most of the converged solutions were
mediocre with only two being acceptable (see
exemplary solutions in Fig. 5). The criteria for
acceptable performance was derived from human
subjects performing a similar task in Lacquaniti
and Soechting (1986; although they appeared to

use a much slower and smaller perturbing
impulse, which was not quantified). When
cocontraction was added to the SLR, the system’s
final performance was significantly better and less
variable (mean=0.006, SD =0.005). All the con-
verged solutions produced better performance
than applying cocontraction alone, with over half
of them being acceptable even by the strict per-
formance criteria.

As shown in the learning curves in Fig. 5, in
both cases, the initial cost did not correlate well
with the cost of the converged solution. The trial
with the best converged solution, for example,
had one of the worst starting costs. Further, most
initial starting points for the trials with
cocontraction had a higher cost than those
corresponding to the system being subjected to
cocontraction alone. Thus, cocontraction by itself
or added to a randomized SLR was not signifi-
cantly better than the randomized SLR alone,
but the addition of cocontraction to an SLR



210

10¢

--------------------- SLR

SLR + Cocontraction
— EXxperimental
Cocontraction

150 Elbow

=)

I}

T 100

© AN < >4
k=)

=

<

Shoulder

0.1

Cost (log scale)

0.01

0.001

Iteration

0 05 1 15 2 25
Time (s)

Fig. 5. Learning curves and exemplary joint angle trajectories for trials in which the spinal-like regulator was trained without (thin
dotted lines) and with co-contraction (thin solid lines). The upper limit of experimental performance (derived from Lacquaniti &
Soechting, 1986; thick black solid line) and modeled performance achieved when applying co-contraction alone (thick gray solid

line) are also plotted for reference.

guaranteed that any randomized SLR would con-
verge to a good performance with a modest
amount of training.

Removing the cocontraction signal from a con-
verged, well-performing system produced an
immediate  deterioration  in  performance
(mean=0.242, SD=0.287; Fig. 6). Retraining the
system using the previously converged solutions
as starting points, however, achieved better perfor-
mance (mean=0.005, SD=0.005) than the SLR
responses without cocontraction. Surprisingly, they
were even slightly (but not significantly) better
than the SLR responses with cocontraction
(SLR + cocontraction: mean=0.006, SD =0.005;
retrained SLR following removal of cocontraction:
mean=0.005, SD =0.005).

Discussion
Role of cocontraction in learning novel tasks

Cocontraction has been shown to be an effective
strategy for stabilizing the arm in situations
where external perturbations are applied (Frank-
lin et al., 2003; Hasan, 2005; Lacquaniti and
Soechting, 1986; Milner and Franklin, 2005) or a
high level of accuracy is demanded (Gribble
et al., 2003). Cocontraction has an obvious
stabilizing effect because each muscle’s viscoelas-
tic properties, termed preflexes (see Brown and
Loeb, 2000), intensifies with activation. The
effects of cocontraction on learning, however,
are not as intuitive because understanding them
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Fig. 6. Learning curves for 10 trials in which the SLR was first trained with cocontraction followed by removing the cocontraction
and further training (traces from left to right). The performance achieved with inactive muscles (first point) and cocontraction alone

(second point) is also shown for reference.

requires knowledge of the control points (e.g.,
descending inputs and reflex gains) in the sensori-
motor system, their influence on the performance
criteria of a given task (defined largely by the
neural connectivity), and the means by which
they are adjusted (i.e., type of adaptive control-
ler). Franklin et al. (2008) show that by adjusting
the degree of feedforward antagonist muscle
coactivation based on position feedback, it is pos-
sible to reproduce some characteristics of physio-
logical learning of novel tasks. This purely
feedforward scheme, however, does not take into
account the actual control points of the nervous
system and the nature of the solution space
thereby afforded. Therefore, it provides limited
insight regarding the actual control problem that
the nervous system encounters and the opportu-
nity to learn to replace energetically expensive
cocontraction with well-chosen gains for proprio-
ceptive feedback.

Our results show that cocontraction reshapes
the solution space, virtually eliminating the prob-
ability of entrapment in poor local minima. The
local minima that are entered during learning
with cocontraction are favorable starting points
for learning to perform the task when
cocontraction is abruptly removed. These results
suggest that the tendency of subjects to resort ini-
tially to cocontraction when learning a new task
(Franklin et al., 2003; Thoroughman and
Shadmehr, 1999) may be an important step in
the learning process that eventually results in
mature strategies marked by little cocontraction
and greatly decreased cortical activity.

Role of the spinal cord

The genetically specified and highly preserved
connectivity of the mammalian spinal cord
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appears to provide a high-dimensional control
space that happens to facilitate rapid and success-
ful learning of new motor tasks. This is true even
when a simplified model of the SLR is controlled
by a highly oversimplified model of the brain and
the algorithm by which it learns. The relatively
simple and local optimization algorithm applied
in this study was successful at finding many
good-enough solutions because the state space
defined by the SLR consists mostly of good local
minima. The complex sequencing of muscle
activations required to resist the perturbation in
the absence of cocontraction was produced by
the SLR circuitry itself acting on afferent and
efference-copy signals generated by the
perturbing torque and the subsequent responses
of the SLR, according to well chosen but unmod-
ulated gains preset by the controlling brain.

Limitations

The model of the brain used in this study was pur-
posely chosen to be highly simplistic to investigate
the emergent properties of the SLR. As shown in
this study and in Raphael et al. (2010), the spinal
cord appears to create a solution space that
facilitates learning “good-enough solutions” rap-
idly; these are properties that are obviously useful
and are presumably exploited by the brain.

The potentiality of spinal circuits may vary
depending on the mechanics of the musculoskele-
tal system and the task. In the system described
here, the added cocontraction signal (perhaps
supplied by corticomotoneuronal cells in the
biological system) was necessary at least initially
to find good solutions with a high success rate.
Interestingly, the SLR for a two degree of free-
dom but concentric wrist joint did NOT require
any initial cocontraction to enable its controller
to learn effective strategies to resist those per-
turbations and the solutions that it produced did
not include cocontraction. It is possible that the
requirement for initial cocontraction arises from
the mechanical instabilities that arise in

nonconcentric multiarticular systems subject to
Coriolis forces.

If cocontraction is, indeed, an important fea-
ture of learning, then it would be useful for the
brain itself to learn to apply and remove it
according to the same learning algorithm used to
adjust SLR gains. This can be accomplished by
driving the learning process according to a cost
function that includes both metabolic energy con-
sumption and kinematic performance criteria. It
may also be useful to employ a more biologically
plausible learning algorithm in which the adaptive
controller adjusts multiple SLR gains simulta-
neously instead of individually. These refinements
of the model are currently underway and will be
applied to the simple perturbation task described
herein, as well as to the rich set of planar reaching
tasks for which human performance data are
available in the literature.

Implications for BMIs

The tasks that we have chosen to teach our model
systems are similar to those that have been cho-
sen by most researchers developing BMIs for
neural prosthetic applications. It seems plausible
that retraining the brain to perform tasks that it
used to perform with the intact spinal cord and
musculoskeletal system will be easier and more
successful if the prosthetic system incorporates
properties and functions similar to those being
replaced or bypassed. The circuitry modeled in
the SLR appears to be complex but useful. It is
easily emulated in software algorithms. A subject
learning to use any BMI must be trained by ask-
ing the subject to imagine performing a particular
task. The recorded neural activity can then be
taken as the solution to the problem of
controlling the SLR. Iterative algorithms could
then be used offline to find a mapping between
the various BMI outputs and the available SLR
inputs that successfully performs the task. We
hypothesize that such a control system will gener-
alize more readily to the wider range of tasks that



subjects must learn to perform, as opposed to
BMIs mapped to outputs of the musculoskeletal
system.
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