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A B S T R A C T   

Data mining is a powerful tool to reduce costs and mitigate errors in the diagnostic analysis and repair of complex 
engineered system, but it has yet to be applied systematically to the most complex and socially expensive system 
– the human body. The currently available approaches of knowledge-based and pattern-based artificial intelli-
gence are unsuited to the iterative and often subjective nature of clinician-patient interactions. Furthermore, 
current electronic health records generally have poor design and low quality for such data mining. Bayesian 
methods have been developed to suggest multiple possible diagnoses given a set of clinical findings, but the 
larger problem is advising the physician on useful next steps. A new approach based on inverting Bayesian 
inference allows identification of the diagnostic actions that are most likely to disambiguate a differential 
diagnosis at each point in a patient’s work-up. This can be combined with personalized cost information to 
suggest a cost-effective path to the clinician. Because the software is tracking the clinician’s decision-making 
process, it can provide salient suggestions for both diagnoses and diagnostic tests in standard, coded formats 
that need only to be selected. This would reduce the need to type in free text, which is prone to ambiguities, 
omissions and errors. As the database of high-quality records grows, the scope, utility and acceptance of the 
system should also grow automatically, without requiring expert updating or correction.   

1. Introduction 

Misdiagnosis of a patient’s pathology often results in substantial 
harm to the health of the patient and to the finances of the healthcare 
system. The extent of the problem has been much studied and many 
factors that lead to such errors have been identified [1,2]. Many of these 
factors are related to the increasing complexity of clinical medicine, a 
trend that is inevitable, accelerating and generally desirable. Advances 
in physiology and molecular biology provide ever more definitive un-
derstanding of pathology and opportunities to diagnose and treat it, but 
at the risk of overwhelming the practitioner’s ability to recall, integrate 
or even locate relevant information when needed. Similar challenges 
arise in other fields such as the maintenance of complex engineered 
systems, where they are increasingly addressed by technology for 
informatics and various forms of automated data mining and artificial 
intelligence (AI), e.g. [3,4]. Many ambitious attempts to apply such 
technology to healthcare have yet to produce comparable results [5–13]. 

Engineered systems have many advantages over humans for pre-
vention and diagnosis of their faults. They automatically generate 
objective, quantitative data rather than responding with subjective an-
swers to subjective questions. They can be assumed to be functionally 
identical when operating correctly rather than subject to many 

idiosyncracies that may or may not be considered normal. Their internal 
mechanisms are fully known and modellable rather than the subject of 
ongoing scientific discovery. Nevertheless, physicians are trained to 
follow logical and orderly procedures when arriving at diagnoses, sug-
gesting that at least some of the process should be supportable, if not 
replaceable, by artificial intelligence. 

Several medical diagnostic support systems have been developed 
over the past 30 years (e.g. DXplain, Isabel, VisualDx, Iliad, QMR, Ada 
DX) [14–18], but none has attained widespread implementation. All 
consist of stand-alone software into which an operator can enter various 
clinical observations and then receive a list of clinical diagnoses that 
might be consistent with those observations. Most use Bayesian 
decision-making based on hand-curated probabilities [8,19,20], but 
none has been integrated into the electronic health records (EHRs) of 
individual patients. In theory, such integration would allow the 
Bayesian probabilities to be calculated and updated based on accumu-
lating clinical experience, as is done for machine maintenance, but 
current EHRs are not structured for this. Some medical support systems 
employ decision trees developed by experts to chart a path through 
additional test data that should be obtained, but the paths are fixed, 
depriving the physician of the many subjective judgments and patient 
specific cost and benefit considerations that are required when dealing 
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with humans rather than machines. 
An ambitious concept of self-learning Knowledge Nets derived from 

clinical records and journal articles was proposed by Lawrence Weed 
[21–23], developer of the widely accepted problem-oriented medical 
record. A simplified version (Isabel Healthcare Inc.) based on selected 
textbooks and journals was able to include the correct diagnosis in a list 
of 30 possibilities for 96% of cases in which key findings were selected 
and entered by hand but in only 74% when given the entire EHR [24]. A 
general knowledge-based implementation by IBM Watson Health 
underperformed expectations because it underestimated the complexity 
of such knowledge [11]. 

The two general applications of artificial intelligence (AI) to this 
problem can be summarized as pattern-based and knowledge-based. 
Both aim to take advantage of large electronic databases of clinical 
experience such as EHRs. Each has been applied with some success to 
circumscribed diagnostic applications in which previously gathered in-
formation about a patient is used to identify candidate diagnoses from a 
circumscribed set of possibilities, as illustrated in Fig. 1. This article 
describes a new algorithm to address the larger requirement of working 
iteratively with the physician to suggest cost-effective next steps in the 
diagnostic process and to integrate new clinical data automatically as it 
becomes available. It builds on an iterative decision-making tool that 
achieved success exploring and identifying unknown haptic objects 
[25,26], an application that is qualitatively similar to differential diag-
nosis, albeit much simpler in scope. Methods are described to add the 
additional capabilities required for clinical diagnostic support. 

2. Requirements 

Defining the requirements of all stakeholders is now a required first 
step in the design of all Class II and III medical devices and software 
[27]. Stakeholders for medical diagnostic software include patients, 
clinicians, clerks, institutional purchasers, programmers, manufac-
turers, regulators and payors. Diagnostic decision-support software 
constitutes a very large and complex medical product that can succeed 
only if it meets their requirements. 

2.1. The clinician’s interface must be convenient and easy to use. 

Many diagnostic decisions are made by primary care physicians 
during visits that are under economic pressure to be as brief as possible. 
Those caregivers are already resentful of time spent with EHR software 
instead of the patient because such software is currently designed and 
required for billing payors rather than to add value for the patient. 
Nevertheless, the EHR is an essential component of any automated 
learning health system, so decision-support should be provided and 
closely integrated within such software rather than diverting the clini-
cian to a separate interface or external resources [9]. If such decision- 
support came to be perceived as valuable to the clinician’s diagnostic 
process by saving time or preventing oversights, clinicians would be 
more enthusiastic about its procurement and use. 

2.2. The software should provide support for clinician’s memory and 
judgment. 

Informatics engineers aspire to create complete solutions that su-
persede human judgment and prevent human errors. Clinical in-
teractions with patients, however, require the types of subjective and 
affective judgment that defy recording in the EHR, much less quantifi-
cation and analysis by AI. Any decision-support system should provide 
only salient, objective information that the clinician may have over-
looked and do so in a way that is as unobtrusive as possible. The 
physician should be able to ignore or override irrelevant or inaccurate 
advice, which is inevitable in such automated systems. 

2.3. The software should avoid provoking liability claims. 

Knowledge-based protocols, checklists, standard operating proced-
ures and other proscriptive “recommendations” for the diagnostic work- 
up of patients invite liability. When diagnostic errors inevitably occur, 
the experts who generated the standards and the supplier that incor-
porated them may be liable for a defective product. If its recommen-
dations result in excessive costs, insurers may refuse to reimburse them. 
If its recommendations are ignored by clinicians because they are 
deemed to be erroneous or excessive, this may constitute evidence in a 
malpractice lawsuit. Efforts to mitigate such problems require frequent 
chart reviews and case studies to identify them, which is time- 
consuming and may be threatening to institutions and clinicians. The 

Fig. 1. A. Differential diagnosis is based on identifying information from 
clinical data (herein referred to as tests) that might distinguish among possible 
diagnoses a, b, c…. A simplistic starting point is to assume that patients in 
different conditions will have different distributions of certain test results 
(values) from each other and from nominal normal values. B. Knowledge-based 
procedures such as checklists, flowcharts and decision-trees have been con-
structed by panels of experts to standardize screening for a limited subset of 
common diagnoses using commonly available diagnostic test data. Pattern- 
based artificial intelligence (AI) has been used on specialized test data such 
as radiological and histological images to identify a broader subset of diagnoses 
for which such tests are already believed to be discriminative. Current AI 
methods require massive amounts of training data that represents adequately 
all possible combinations of test data and diagnoses. This is impractical for the 
complete and growing ~5,000 dimensional problem of all clinical tests avail-
able (but obtained inconsistently) to discriminate among ~14,000 diagnoses. In 
the language of informatics, this results in a high dimensional hyperspace that 
will inevitably be sparsely populated, resulting in “the curse of dimensionality” 
[40] when attempting to apply pattern-based AI (https://deepai.org/mach 
ine-learning-glossary-and-terms/curse-of-dimensionality#). Various cures for 
this curse have been proposed but they require special conditions that are not 
relevant to the general problem of clinical diagnosis [41,42]. 
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information provided to the clinician should be helpful rather than 
proscriptive and should derive from sources and processes that pose no 
liability. 

A determination of negligence is usually based on prevailing stan-
dards of care, which are difficult to establish for a rapidly evolving 
technology such as diagnostic support software. Responsibility for a 
diagnostic misadventure might result from blind adherence to its inap-
propriate recommendations or from failure to employ technology that 
would have made an appropriate recommendation [28]. 

2.4. The software should encourage efficiency. 

The cost of healthcare has been rising unsustainably for two reasons 
that are inextricably linked: increasingly powerful and expensive diag-
nostic and therapeutic tools (a good thing) that inevitably tax the cli-
nician’s ability to remember them and to understand their benefit/cost 
(a bad thing). The true cost of any diagnostic test must include its 
nominal charge, delays associated with obtaining results and any risks of 
adverse events from the test itself (e.g. radiation, embolization, allergic 
reaction, etc.). The costs of delay and adverse events are patient-specific, 
as is the benefit of a specific test toward establishing a definitive diag-
nosis at any given time in any given patient. 

2.5. Diagnostic advice should update automatically as standards of 
practice evolve. 

The decision-support software should recognize when new items 
appear in the EHR database, monitor their utility based on collective 
clinical experience and provide the salient items to the clinician during 
the decision-support process. The growth of diagnoses, diagnostic tests 
and therapeutics is accelerating and best methods of practice are 
constantly evolving. Research to extract and obtain consensus on such 
methods is expensive, slow and generally limited to a few high-profile 
clinical challenges. Extracting such information from journal articles 
via natural language processing (e.g. IBM-Watson) and inductive 
learning [29] remains challenging [11], especially for the complex 
sentence structures often found in scientific writing [30]. 

2.6. The software should support iterative decision-making. 

Clinical diagnosis is inherently iterative, unlike extracting a pattern 
from a complete image. Given only a chief complaint and essential de-
mographics, the busy clinician is already prioritizing the order of 
questions and observations during the history and physical according to 
a probability-weighted differential diagnosis [31]. This is generally not 
quantified, it is only partially recorded and it may be almost subcon-
scious, but it is an essential process for efficient diagnosis and treatment. 
It is anathema to artificial intelligence based on pattern recognition by 
deep-learning neural networks, which require reasonably complete and 
well-curated EHRs. 

2.7. The software should propose treatment options and consider 
responses. 

The decision-support system should have knowledge of treatments 
and provide advice based on responses to treatment regardless of when 
or where they occurred. Failure to arrive at a definitive diagnosis before 
initiating a treatment is not a diagnostic error. Often the most cost- 
effective way to rule out a common cause of a problem is to see if the 
patient responds to a course of its common treatment. Diagnostic chal-
lenges such as unusual presentations and rare diseases are usually 
entertained only if such treatment fails, but unfortunately not neces-
sarily when [32]. 

3. Design 

The description below identifies the structure and major components 
of a decision-support system called Bayesian Efficient Diagnosis & 
Treatment (BEDT). It combines classical Bayesian inference with an 
inversion of Bayes’ theorem called Bayesian Exploration (Fig. 2). Its 
success will depend on buy-in and substantial investment from many 
stakeholders both in the clinic and in the larger healthcare system. Those 
stakeholders will need to refine the current design before implementa-
tion. The conceptual design described here can be used to identify 
specific challenges that are amenable to existing technology or that 
require new technology. When stakeholders are satisfied with the design 
and engineers have determined that the required technology is available 
or feasible, it then becomes possible to create the partnerships, budgets 
and schedules required to implement a realistic plan. 

In the descriptions below, the term “test” is used to include the 
collection of any piece of clinically useful information: basic de-
mographics, items on an intake questionnaire, clinical history questions, 
physical exam observations, laboratory tests, therapeutic trials, etc. A 
test returns a value, which may be a continuous variable, a yes/no 
answer or a probability of an observation (e.g. “indicative of” or “sug-
gestive of” or “consistent with” a diagnosis or other conclusion). The 
terms “benefit” and “cost” are also formally defined below. 

3.1. Bayesian exploration 

Bayesian exploration is a new form of AI that appears to overcome 
the limitations of pattern-based and knowledge-based AI (Fig. 1). 
Bayesian inference has long been used to determine the probability of a 
particular event such as a diagnosis given an evolving set of observations 
(tests) [19,29,33]. Bayesian exploration inverts Bayesian inference to 
decide which next observation (test) will best disambiguate the 
currently probable events [25,26]. 

The anticipatable benefit of any diagnostic action depends on which 
diagnoses are currently being entertained in a specific patient. For 
Bayesian exploration, the current EHR database is regularly mined 
(which can be done offline) to produce confusion matrices (Fig. 3 top) 
whose values reflect the overlap in probability density functions of the 
results reported for each test in patients with each diagnosis (Bhatta-
charyya coefficient, most easily computed for tests that tend to produce 
normal distributions of values but can be extended to skewed, Boolean 
and other data types). The benefit of using a given test at any given point 
in a differential diagnosis can be estimated by weighting the confusion 
matrix according to the current (Bayesian prior) probabilities of each 
diagnosis in the current patient (Fig. 3 bottom). The sum of the weighted 
cells in the confusion matrix reflects the likely confusion that will remain 
after performing the test with this patient, so the test with the lowest 
sum is the statistically optimal choice with the largest anticipated 
benefit for the diagnostic process. 

Fig. 2. Bayesian Efficient Diagnosis & Treatment consists of two steps that form 
an iterative cycle: forward Bayesian inference uses currently available diag-
nostic data in a patient’s EHR to identify the probabilities of items in their 
differential diagnosis; inverse Bayesian exploration uses the collective clinical 
experience in all EHRs to prioritize next items of diagnostic data according to 
their ability to disambiguate the differential diagnosis. 
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Like both knowledge-based and pattern-based AI, Bayesian explo-
ration automatically abstracts information from large databases but 
without the expert curation required of current Learning Health Systems 
[12]. Like pattern-based AI, it extracts information autonomously from 
whatever events have been recorded in its database, but it copes much 
better with inherently high-dimensional and sparse data such as EHRs. 
This is because, like humans, it solves problems in steps rather than 
looking for a gestalt in one pass [25]. Like knowledge-based AI, Bayesian 
exploration informs iterative processes such as differential diagnosis, 
but it does not need to be taught “good” vs. “bad” procedure, about 
which it is agnostic. Unlike the extensive off-line training required by 
both pattern-based and knowledge-based AI, Bayesian exploration 
mines the EHR database at time of use, informing the clinician about the 
diagnoses that were eventually confirmed in similar patients and the 
diagnostic tests that other clinicians have employed. If new diagnostic 
tests (i.e. dimensions) or diagnoses appear in its continuously growing 
database, they will be considered and presented automatically. 

Bayesian exploration is not a form of machine learning. No matter 
what data it is fed, its underlying algorithm is deterministic, transparent 
and unchanging, unlike deep-learning neural networks [34]. It claims no 
expertise and provides no information that the clinician couldn’t have 
extracted by (very) extensive review of the EHR database. The advice 
provided to the clinician reflects the standard of practice represented in 
the cumulative actions of all clinicians in the database rather than 
contentious or changing opinions of experts. 

3.2. Cost estimation 

The diagnostic action that promises the largest benefit isn’t neces-
sarily the only or even best course of action. The clinician needs sug-
gestions that are practical because they consider costs as well as benefits. 
This requires objective information regarding availability, charges, and 
delays associated with each test procedure, as well as subjective con-
siderations that are patient-specific such as comorbidities, reliability, 

mobility and ability to pay. The objective information can be used to 
compute a benefit/cost ratio so that the diagnostic options most likely to 
be cost-effective are at the top of a rank-ordered list (Fig. 4). That list 
should be presented alongside a rank-ordered list of all diagnoses over a 
threshold level of probability so that the clinician can understand the 
utility of the options for diagnoses that he/she might have overlooked 
(see below). In the end, however, the clinician must evaluate subjective 
factors to make appropriate selections, which the software can then 
automatically record and implement efficiently as coded orders. The 
machinations of the BEDT algorithms in computing those lists can and 
should be hidden. 

The different aspects of cost (financial, risk and delay) need to be 
combined into a single cost estimate in order to compute the benefit/ 
cost ratio. Financial cost tends to be locally variable and may already be 
available in the billing systems associated with EHRs. Risk cost consists 
of the historical expenses associated with each adverse event associated 
with a test multiplied by the probability of its occurrence, which is often 
available from the literature. Delays tend to be highly local; the cost of 
any anticipated delay depends on the probability that the patient has a 
condition for which such a delay in diagnosis and treatment incurs costs 
associated with increased mortality or morbidity. Fig. 5 illustrates how 
the iterative nature of Bayesian exploration can generate such an esti-
mate by extrapolating the current situation according to a series of “if- 
then” scenarios (akin to the stochastic mathematical analysis called 
Markov chains). 

3.3. Clinician’s interface 

The current user interfaces for EHR databases are generally unpop-
ular with clinicians. They include hierarchical pull-down menus with 
pick-lists of coded diagnoses and test procedures. Many clinicians ignore 
these in favor of entering free text that is often colloquial shorthand, 
perhaps misspelled, and almost useless for automatic billing or data 
mining. Human clerks then comb through the clinician’s notes and 

Fig. 3. Bayesian Exploration is a fully automatable 
and iterative process that starts with the initially 
available clinical data to identify the currently most 
probable diagnoses (Priors) according to commonly 
used Bayesian inference. A clinical Database drawn 
from the collective EHRs of a large, diverse popu-
lation of patients quantifies the degree to which any 
given clinical test is likely to distinguish among di-
agnoses a, b,…, by trying to minimize overlap (red) 
between the distributions of test values. Each 
quantified overlap constitutes an entry in the 
confusion matrix for each test. During use with a 
patient, the values in the confusion matrix for each 
test are multiplied by the Prior probabilities of each 
diagnosis (green bars, resulting in weight depicted 
inversely as shading for each cell) and summed 
(omitting the blue diagonal cells that are necessarily 
1.0). Tests with the lowest sum are most likely to be 
useful and may be selected by the clinician. When 
new results are available, Bayesian inference com-
putes the new (posterior) probabilities of each 
diagnosis. If one diagnosis has a high enough 
probability, the process can be stopped; otherwise, 
these probabilities become the priors for the next 
iteration of the differential diagnostic process. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   

G.E. Loeb                                                                                                                                                                                                                                         



Journal of Biomedical Informatics 116 (2021) 103723

5

orders to extract billing codes [35]. Informatics specialists painstakingly 
curate databases so they can be used for chart-based research. BEDT 
follows and supports the thinking process of the clinician, so the most 
relevant observations, diagnoses and tests can be offered to the clinician 
(complete with standard nomenclature and codes) for one-click selec-
tion in the user interface, eliminating deeply nested pick-lists or manual 
entry of free text and post-processing. 

The highly simplified example illustrated in Fig. 6 assumes that there 
are only three diagnoses and four diagnostic procedures in the database. 
Based on the basic intake data (presenting complaint, age, sex etc.), the 
BEDT software presents the diagnoses rank-ordered according to 
descending probability and the diagnostic tests according to decreasing 
benefit/cost. Based on subjective impressions regarding the patient’s 
condition, the clinician might tell the patient to try aspirin while waiting 
for an MRI test, which was automatically scheduled when selected. 
When the patient returns in two weeks, the MRI results provide a 
definitive diagnosis and a clear indication of the most useful next action. 
Again, the clinician needs only to select the now-obvious choice rather 
than type more text. 

4. Path to implementation 

4.1. Quality of EHRs 

This is a chicken-and-egg problem for BEDT. Its probabilistic nature 

makes it relatively resistant to errors and omissions, but the current state 
of most uncurated EHR databases will be a serious obstacle for BEDT or 
any learning health system [13]. One possibility is to start with a nucleus 
of well-curated, albeit limited, EHRs in a database sufficient to provide 
useful information for a limited range of diagnoses and tests. Clinicians 
would then need to type in many items that appear to be missing, which 
is essentially what many are now doing all the time. Because BEDT 
updates its knowledge every time it queries the database, the new items 
will be available immediately for selection by other clinicians; their 
diagnostic utility will become apparent from the collective experiences 
of their patients. Possible sources for such a database nucleus include 
pediatric hospital admissions, which often arise from circumscribed and 
eventually well-diagnosed causes, or rare disease consortiums [32], 
which deal with problems that are often misdiagnosed at great expense 
and for which unfamiliar new diagnoses and specific test methods are 
now appearing rapidly. 

Like any automated decision support system, BEDT assumes that all 
or at least most of the relevant clinical information about a patient’s 
history is in that patient’s EHR. One challenge is to provide a clinician’s 
interface that efficiently captures important observations that do not 
lend themselves to continuous variables, such as types of pain or the 
texture of skin. This would be facilitated by the ability of BEDT to pri-
oritize the display of the most likely and important observations in 
precoded form. Another challenge is the scattering of health records in 
the balkanized US healthcare system, where a given patient may have 

Fig. 4. A flowchart for the interaction of the BEDT 
software with physician and patient. The intake in-
formation from the patient plus any preexisting EHR 
provides input to Bayesian inference to create an 
initial differential diagnosis (Dn) from the most 
probable diagnoses (P(Dn)) in the database of all 
EHRs, delimited by a threshold probability (Pcon-
sideration) and rank-ordered according to descend-
ing probability. The Bayesian exploration algorithm 
identifies the Actions that are likely to provide the 
greatest diagnostic benefit and extrapolates their 
Costs via Markov chains (see Fig. 4) to determine a 
Benefit/Cost ratio that is used to rank-order the 
Actions for the physician to select as desired. When 
the Results of the Actions are available, Bayesian 
inference is repeated to recompute Dn and P(Dn) for 
presentation to the physician.   
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Fig. 5. State 1 illustrates a point in the diagnostic 
work-up where three diagnoses are being consid-
ered (Da, Db, Dc) with initial Bayesian probabilities 
P(Da), P(Db) and P(Dc). Two further diagnostic tests 
are under consideration, with PDFs for each diag-
nosis illustrated at the top. If the patient actually has 
Da (whose probability is only 0.2) or Db (whose 
probability is 0.3), the most likely outcome of Test 1 
(the mean value of its PDF for Da) will still be 
ambiguous regarding Db, so this path will entail 
both the probability-weighted cost C1.a and the 
further cost C2.a of conducting Test 2 to arrive at a 
final diagnosis. In this case, it would have been 
better to start with Test 2, incurring only the cost 
C2.a. If the patient actually has diagnosis Dc (the 
highest probability at the starting point), then it is 
less costly to start with Test 1. The probability- 
weighted sums of the costs of starting with Test 1 
or Test 2 are divided into the diagnostic Benefit of 
each Test as computed by Bayesian exploration 
(Fig. 3) to generate the Benefit/Cost value for each 
Test that is presented to the clinician.   

Fig. 6. A highly simplified example to illustrate the 
general nature of the clinician’s interface with 
BEDT. At each stage of the work-up, the physician 
sees a list of the current items in the differential 
diagnosis with their diagnostic codes, rank-ordered 
according to current probability. BEDT presents 
another coded list of the pertinent diagnostic tests 
with codes, rank-ordered according to their benefit/ 
cost value at this stage of the work-up. After 
selecting the desired tests and obtaining their results 
at a follow-up visit, the differential diagnosis has 
been reordered, as is the list of actions and their 
new benefit/cost. Note that the option “Crani-
otomy” might be diagnostic or therapeutic. If the list 
of diagnoses includes “headaches resolved”, this is 
now the procedure most likely and cost-effective to 
produce that outcome, but the low initial probabil-
ity of meningioma placed it at the bottom of the 
initial list of diagnostic tests.   
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key parts of their medical history distributed over multiple doctors’ 
offices, out-patient clinics, emergent care facilities and hospitals, many 
of which use mutually incompatible EHRs and databases or undigitized 
records. This suggests that BEDT should be developed and tested 
initially in a walled-garden such as an HMO or in a country with a na-
tional healthcare system and comprehensive, centralized EHRs. Success 
there might motivate the myriad policy and information technology 
changes required for data sharing in less centralized systems. 

A key piece of information for BEDT is a correct final diagnosis for 
each patient’s condition(s). It doesn’t matter how long or tortuous the 
path, but such a diagnosis needs to be in the EHR to be able to quantify 
the utility (or lack) of any steps along the way. This requirement is 
particularly problematic for unusual presentations and rare diseases that 
are often not diagnosed until the patient is referred out of their local 
healthcare system or comes to autopsy. The declining rate of autopsies 
[36] and the isolation of such records from the clinical EHRs will need to 
be addressed for BEDT or any other AI approach to diagnosis to perform 
well. 

4.2. Temporal property of clinical data 

Diseases evolve and their clinical manifestations change in their 
nature and significance over time. The EHR generally includes time-
stamps on patient visits and clinicians usually note the duration of 
symptoms and treatments, so temporal information is available, but it 
cannot be used as a continuous variable without causing the dimen-
sionality of the problem to explode. One possibility is to quantize it into 
bins that reflect the different pathophysiological processes that are 
responsible for such evolution. For example, a sore throat or chest pain 
that has been present for a month is likely to arise from causes that are 
different from those likely to be responsible after a week, a day or an 
hour. A small number of such crude (essentially logarithmic) bins can be 
used to subdivide general observations into discrete but useful temporal 
categories. 

4.3. Diagnostic classification systems 

The ICD system (International Classification of Disease) started as an 
epidemiological tool and evolved to facilitate billing and reimbursement 
rather than differential diagnosis. A great deal of work has gone into this 
but it may not be fit for the purpose of improving healthcare [37]. Cli-
nicians and clerks tend to use different codes for a singular diagnosis and 
may combine codes inconsistently to reflect predisposing or compli-
cating conditions, leading to calls for simplification [38,39]. This chal-
lenge needs to be addressed as part of any automated effort to provide 
broad support for diagnosis and treatment. It will be difficult to use 
existing EHRs based on ICD-10 codes for a demonstration of feasibility 
without requiring so much curation that it vitiates relevance to current 
clinical practice. If a BEDT system is built on a new coding system, it may 
not be acceptable in a healthcare system based on ICD-10 codes for 
reimbursement. 

Many patients have more than one concurrent disorder. If the 
pathophysiological effects of each interacted linearly in the probability 
density functions of results from each test, the effects of one confirmed 
diagnosis could be used to normalize results in order to discriminate a 
secondary disorder. Unfortunately, these interactions are often 
complexly and nonlinearly synergistic in terms of presentation, diag-
nostic test results and response to treatment. One approach is to create 
new diagnostic codes for syndromes and complications, which is already 
being done in the ICD system to determine appropriate reimbursement 
levels. This remains a work in progress for which BEDT could provide a 
useful perspective, but meanwhile it is another argument for the 
importance of providing easily over-ridden diagnostic support rather 
than actual diagnoses. 

4.4. Feasible extensions 

The treatment part of BEDT is easily extended beyond therapeutic 
trials for diagnosis. If the diagnoses list itself contains items identifying 
outcomes such as “pneumonia resolved”, “cancer in remission” and 
“well-patient”, BEDT could be used to suggest treatments that might 
produce such outcomes and that were rank-ordered according to 
benefit/cost to do so. If the treatments list were further extended to 
include lifestyle advice such as “reduce caloric intake”, “get more ex-
ercise” and “stop smoking”, BEDT could remind physicians to discuss 
such preventive medicine with patients when most likely to be effective 
in achieving well-patient status. As genetic data become more common 
in EHRs, BEDT will automatically detect if single nucleotide poly-
morphisms are correlated with increased probability of certain di-
agnoses or different responses to treatment, a discovery that now usually 
requires large, expensive and narrowly focused clinical studies. 

The norm-based strategy of BEDT makes it particularly suited to 
looking for systematic deviations from practice norms that might indi-
cate various failings and abuses of public health. Higher than expected 
incidence of a diagnosis in a geographical locale could alert public 
health officials to look for an outbreak of an infectious disease or an 
environmental contaminant. Higher than expected use of expensive 
treatments with low benefit/cost might trigger accountable care orga-
nizations (ACOs) to do in-service training or insurers to look for fraud. 

5. Where to Start? 

Close integration of BEDT with the EHR and database software is 
essential for its computational function, for the usability of the clini-
cian’s interface and to achieve the virtuous cycle anticipated from 
eliminating much of the free text that now defeats the original goal of 
EHRs. This suggests that the project should be led by a software devel-
oper. If the project were to be funded as a profit-making enterprise, the 
improved usability, reduced clerical effort and reduced diagnostic 
oversights would all be marketable features to institutional purchasers. 
Providing decision-support to clinicians that is extracted from their own 
collective clinical records should minimize the regulatory burden asso-
ciated with “Software as a Medical Device” (https://www.fda.gov/me 
dia/100714/download) and will probably not fall under the new 
“Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a 
Medical Device (SaMD) Action Plan” (https://www.fda.gov/me 
dia/145022/download). The completely anonymized probabilities and 
benefit/cost estimates should avoid patient privacy and data security 
issues. 

The radically different purpose and design of BEDT from current EHR 
software may be unattractive to purveyors of existing products. EHR 
software has become a mature industry, despite its clinically dysfunc-
tional nature. It has locked up customers with many legacy systems for 
accounting and reimbursement. BEDT will require close integration with 
the business plans of healthcare providers and complex reimbursement 
systems, which are particularly balkanized in the US. Rethinking diag-
nostic classification, quantifying diverse data types and sharing EHRs 
across platforms are massive challenges faced by any automated deci-
sion support system for general medical practice. This suggests that 
development of BEDT might need to be led by a large new player looking 
to take advantage of an extremely large and inefficient marketplace with 
many dissatisfied stakeholders. Fortunately, we live in an age when 
large-scale disruptive innovation of established industries has become 
feasible and investable once it looks technologically possible. 
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