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Recurrent circuitry components are distributed widely within the brain, including both
excitatory and inhibitory synaptic connections. Recurrent neuronal networks have
potential stability problems, perhaps a predisposition to epilepsy. More generally,
instability risks making internal representations of information unreliable. To assess the
inherent stability properties of such recurrent networks, we tested a linear summation,
non-spiking neuron model with and without a “dynamic leak”, corresponding to the low-
pass filtering of synaptic input current by the RC circuit of the biological membrane. We
first show that the output of this neuron model, in either of its two forms, follows its
input at a higher fidelity than a wide range of spiking neuron models across a range
of input frequencies. Then we constructed fully connected recurrent networks with
equal numbers of excitatory and inhibitory neurons and randomly distributed weights
across all synapses. When the networks were driven by pseudorandom sensory inputs
with varying frequency, the recurrent network activity tended to induce high frequency
self-amplifying components, sometimes evident as distinct transients, which were not
present in the input data. The addition of a dynamic leak based on known membrane
properties consistently removed such spurious high frequency noise across all networks.
Furthermore, we found that the neuron model with dynamic leak imparts a network
stability that seamlessly scales with the size of the network, conduction delays, the
input density of the sensory signal and a wide range of synaptic weight distributions. Our
findings suggest that neuronal dynamic leak serves the beneficial function of protecting
recurrent neuronal circuitry from the self-induction of spurious high frequency signals,
thereby permitting the brain to utilize this architectural circuitry component regardless of
network size or recurrency.

Keywords: neuron model, recurrent networks, dynamic leak, spurious high frequency signals, non-spiking,
excitation, inhibition

INTRODUCTION

Recurrent excitatory loops are a common feature in the central nervous system, such as in
neocortical circuits (Binzegger et al., 2004; Song et al., 2005; Koestinger et al., 2018; Kar and
DiCarlo, 2020), thalamocortical loops (Steriade, 1997; Hooks et al., 2013), cerebrocerebellar and
spinocerebellar loops (Allen and Tsukahara, 1974; Jörntell, 2017). Inhibitory interneurons have
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been described to provide lateral inhibition (Zhu and Lo, 2000;
Douglas and Martin, 2009; Obermayer et al., 2018; Rongala
et al., 2018) and feed-forward inhibition (Swadlow, 2003;
Isaacson and Scanziani, 2011), but they also make synapses on
other inhibitory neurons, thereby potentially forming recurrent
disinhibitory loops as well (Jörntell and Ekerot, 2003; Pi et al.,
2013; Sultan and Shi, 2018). Furthermore, such excitatory
and inhibitory connectivity has been reported to be balanced
(Anderson et al., 2000; Wehr and Zador, 2003; Okun and Lampl,
2008). Functionally, recurrent connections enable a network to
use preceding states to impact the processing of the present
state. Such state memory can, for example, improve learning
performance (Sutskever et al., 2014). However, due to the
many potential positive feedback loops in larger networks with
extensive recurrent connections, imbalances in excitatory (E) and
inhibitory (I) synaptic activity could lead to activity saturation
(Brunel, 2000; Vogels and Abbott, 2005), such as observed in
epilepsy (Chakravarthy et al., 2009; Liou et al., 2020), or, in milder
cases, a noise-like perturbation of the information content of
internal signals, which would be disadvantageous for learning.

We explored potential noise and stability issues that could
arise in recurrent neuronal networks. In order to focus on the
network architecture aspect of this problem, we used a non-
spiking neuron model designed to be simple and computationally
efficient, while embodying fundamental properties of Hodgkin-
Huxley conductance-based models. The relevance of a non-
spiking neuron model stems from the stochasticity inherent
in neuronal spike generation (Naundorf et al., 2006; Saarinen
et al., 2008; Spanne et al., 2014; Nilsson and Jörntell, 2021),
which renders the spiking output of the individual neuron
to some degree unreliable in terms of information content.
To compensate for such unreliability, the brain could encode
each representation across a population of neurons (below
referred to as an ensemble of redundant neurons), as has been
observed in the brain in vivo (Spanne and Jörntell, 2015).
The input-output relationships across a range of neuron types
in the central nervous system in vivo indicate that overall,
each neuron’s spike output is a probability density function
(PDF) of the underlying membrane potential of the neuron
(Spanne et al., 2014). That PDF thereby approximates the
membrane potential and could be considered to correspond
to the spike output of an ensemble of neurons with similar
inputs. Thus, simulating a non-spiking neuron and providing
the PDF of the neuron as its output avoids the extreme resource
demands of both simulating the highly complex spike generation
stochasticity (Saarinen et al., 2008) and compensating for
that stochasticity by simulating large populations of redundant
neurons. Synaptic input creates modulation of the neuronal
membrane potential, hence its PDF, by temporarily activating
conductances that are added to the static leak conductances.
The synaptic conductances and currents can modulate very
rapidly but the membrane capacitance together with the
static leak channels forms an RC circuit that constitutes
a low-pass filter (herein, dynamic leak) for the resultant
membrane potential. We hypothesized that this dynamic
leak would improve network stability without compromising
information transfer.

To test this hypothesis, we constructed a highly recurrent, two-
layer neuronal network, with five excitatory and five inhibitory
neurons in the first layer and four excitatory and four inhibitory
neurons in the second layer. All neurons in both layers
were reciprocally connected with randomized gains. All first
layer neurons were provided with six randomized and broadly
distributed input signals. A striking finding was that for all tested
network configurations, synaptic weight distributions, various
conduction delays and input density of sensory inputs, recurrent
networks tended to generate high frequency components that
were not present in the sensory input data. In all cases these
transients were eliminated by incorporating a dynamic leak in
the neuron models without compromising the representation of
the input signals.

We note that the fully reciprocal connectivity employed in
the networks described herein encompasses the wide range of
connectivity that has been identified experimentally in cortical
and other central neural structures (see above). The strictly
layered connectivity of many popular neural network models
for deep learning reflects only a small subset of the known
complexity of biological networks. Attempts to add limited
recurrency into such models have encountered stability problems
(Brunel, 2000; Vogels and Abbott, 2005), for which dynamic
leak appears to offer substantial mitigation. Chowdhury et al.
(2020) demonstrated that a leaky component (a low-pass filter
effect) in a spiking neuron model (Leaky-Integrate and Fire,
LIF, model) eliminates the high-frequency components from the
input, which resulted in improved robustness against random
noise in a multi-layer feed forward network trained with back-
propagation.

MATERIALS AND METHODS

Neuron Model
Linear Summation Neuron Model (LSM)
The neuron model implemented for this study was a non-spiking,
linear input summation model with an additional dynamic leak
component. For the version without dynamic leak, the activity
(ANoDyn ) was given by the total weighted input activity (w∗a)
(where a is the activity of each individual input and w is the
weight of that input) across all individual synapses (i) (Eq. 1).
Electrotonic compactness in the neuron is assumed, so that
all synapses have equal impact on the activity of the neuron.
This simplified model of synaptic input activity integration
can be shown to be closely related to a Hodgkin-Huxley (H-
H) model (see Appendix 1), for example resulting in the
preservation of two key dependencies of EPSPs and IPSPs on
membrane biophysics: (i) input response magnitude depends on
the difference between the membrane potential and the reversal
potentials for the relevant corresponding “ion channels” (i.e.,
depending on if the input is provided through an excitatory or
an inhibitory synapse); (ii) input response magnitude depends on
relative shunting of synaptic currents by conductances resulting
from the background of synaptic input activity (Eq. 1). The
responsive properties of the LSM and the H-H neuron model are
shown to be highly similar in Supplementary Figure 1.
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The LSM implemented a degree of activity normalization
(denominator of Eq. 1) by introducing a static leak, which was
calculated as the product of a constant (kstatic) multiplied by the
number of synapses on the neuron, plus a term reflecting the total
number of open channels, which is activity dependent.

To mimic the effect of the RC circuit created by the ion
channels and the capacitance of the membrane, we added a
dynamic leak function to the neuron. To test the impact of the
dynamic leak on network dynamics, we compared the networks
composed of neurons with the dynamic leak with the same
network when the neuron model did not include this dynamic
leak. The neuron activity for the neuron model variant with
dynamic leak (ADyn) is given by the linear summation model
with an additional leak time constant (τDyn). Larger neurons
with more synapses tend to have longer time constants (Zhang,
2004), so we tried various ways of scaling τDyn with number of
synapses i. Thereby, the dynamic leak integrates the function of
the capacitance in the RC circuit of the biological neuron into the
LSM (Eq. 2). The neuron activity of this model is given by the
following equations,

ANoDyn =

∑
(wi∗ai)

(kstatic∗i)+
∑
|wi∗ai|

(1)

τDyn∗ dADyn

dt
= −ADyn (t)+ANoDyn (t) (2)

0 ≤ ANoDynand 0 ≤ ADyn (3)

Figure 1 illustrates the output activity of individual LSM
neurons (Eqs. 1–3), which were isolated in the sense that
they were not connected to any neuronal network other
than the provided inputs, for different input combinations
(from left to right in Figure 1) of emulated excitatory and
inhibitory synaptic inputs (Figures 1A,B). The input spike
trains were convoluted using a kernel function in order to
emulate post-synaptic-potential inputs (detailed below, Eq. 6),
that were fed to the LSM neuron (Figures 1C–E). The LSM
activity without dynamic leak (ANoDyn , Figure 1F) shows the
activity normalization resulting from the static leak constant
(kstatic = 1, for this illustration), along with the effect of
the neuron output activity threshold at zero (Eq. 3). The
activity of the LSM neuron would also be expected to fall
back toward this zero level of activity without any external
or internal input. This level hence corresponds to a threshold
for spike initiation among a population of similarly connected
neurons that are typically represented by the one modeled
neuron. The output activity for the LSM neuron with dynamic
leak (ADyn, Figure 1G) exhibits a low pass filtering effect on
the output activity, which is reflective of the effect of the
RC component integrated in the LSM neuron model with
the dynamic leak.

Figure 2 illustrates the impact of various static and dynamic
leaks. As indicated in Figure 2A, the static leak constant
acts as a normalization factor for the total neuron activity,
without diminishing the underlying dynamics of that activity
(Supplementary Figure 2). At very low values of the static

FIGURE 1 | LSM responses to emulated synaptic inputs. (A) The activation
times of three different excitatory synaptic inputs are indicated as spike trains.
(B) The activation times of one inhibitory synaptic input. (C,D) The excitatory
and inhibitory sensory input spike trains were convoluted using a kernel
function (see section “Materials and Methods”) to create input that resembles
post-synaptic potentials. Note that the input to the LSM neuron can exceed 1
a.u., while the output of the LSM neuron cannot. Calibration applies to (C–E)
(traces in the shaded region). (E) The input from summation of the excitatory
and inhibitory inputs. (F) LSM (without dynamic leak, kstatic = 1) output activity
for the given PSP inputs. Calibration applies to (F–G). (G) LSM (with dynamic
leak, kstatic = 1, τ dyn = 1/100 s) output activity for the given PSP inputs.

leak constant, the mean activity reached sufficiently high
levels for the reversal potential to start having a significant
dampening effect on the activity dynamics (see uppermost trace
in Figure 2A), substantially reducing the coefficient of variation
(CV in Figure 2B). Figures 2C,D illustrates the additional impact
of various values of the dynamic leak constant. Figure 2C
and Supplementary Figure 3 demonstrate the filtering effect
of the dynamic leak constant on the total neuron activity.
A high value of this dynamic leak constant substantially
smoothens the activity dynamics, which was reflected in the
resulting low CV value (Figure 2D). The dynamic leak constant
(τDyn) was set to 1/100 for the rest of this study, unless
otherwise specified.

In Appendix 1, we show that the LSM neuron model can
be derived from a simplified H-H type conductance-based
neuron model. In the H-H model, the leak is proportional
to the membrane voltage and the synaptic currents are scaled
depending on the membrane voltage, so that the voltage is
limited to a fixed range. The differential equation describing
this model suffers from numerical instability, therefore we
solve it with the implicit Euler method. The model is simple
enough so that an analytical solution can be obtained. Key
H-H model features that are captured by the LSM neuron:
(i) the response to a given input scales with the difference
between the current activity level (membrane potential, V)
and the reversal potentials of the excitatory/inhibitory inputs
(which have been normalized to +1 and -1, respectively); and
(ii) the impact of a given input is scaled by the degree of
the shunting caused by the total synaptic activity the neuron
receives at that time.
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FIGURE 2 | Impact of static leak (kstatic) and dynamic leak constant (τ dyn) in LSM. (A) Impact of the value of kstatic in the LSM (for τ dyn = 1/100) for a given
pseudo-random sensory input at 50 Hz for each of six sensors (see Figure 3). (B) The perseverance of dynamics in the neuron activity (A) for varying kstatic value as
assessed by the coefficient of variation [CV = σ(A)/Á]. A higher value of CV indicates a higher activity variance relative to the mean activity. (C) Impact of the value of
τ dyn in the LSM (for kstatic = 1) for the same pseudo-random sensory input as in (A). (D) The CV as a function of the value of the dynamic leak (τ dyn) in the LSM.
The arrow indicates the value of τ dyn used in rest of this paper unless otherwise specified.

Izhikevich Neuron Model (IZ)
For the Izhikevich neuron model (Izhikevich, 2003), the
membrane potential (IZv) and the adaptation variable (IZu)
were updated via the following nonlinear differential equations
discretized using Euler’s method.

˙IZv = IZAIZ2
v +IZBIZv +IZC−IZu +(IZinput∗IZk) (4)

˙IZu = IZa(IZbIZv−IZu)

When the membrane potential reached the spike depolarization
threshold of 30 mV , one spike was produced followed by a reset:

if IZv ≥ 30mV,then
{

IZv ← IZc
IZu ← IZu +IZd

(5)

The IZA, IZB, andIZC parameters and the spiking threshold were
the standard ones of the Izhikevich artificial neuron model,
whereas the parameters IZa, IZb, IZc, and IZd were selected
(Table 1 and Figures 3E,F) to mimic a regular spiking behavior
(Izhikevich, 2003, 2004). IZinput was the input current to the
neuron model, that was weighted synaptic activity (w∗a) in this
article and IZk is the input gain factor.

Further, to analyze the IZ model behavior across different
spiking and bursting behaviors, we have explored the parametric
space (Table 2 and Figure 3G) of IZa, IZb, IZc, IZd, and IZk
(parameters in Eqs. 4, 5) within the boundaries identified in
Izhikevich, 2003. We investigated the IZ neuron model responses
(Figure 3G) across 405 different parameter settings for each given

input spike frequency. The parameter space was defined by the
possible combinations of parameters listed in Table 2.

Network Connectivity
Our network was a two-layer fully connected neuronal network
that comprised both inhibitory neurons (IN) and excitatory
neurons (EN) (Figure 4A). This network configuration provides
a simple system that includes the critical element of recurrency.
The network architecture is defined based on the following
two rules: (a) The sensory inputs are projected as excitatory
synapses to all neurons in layer 1 only; (b) All excitatory and
inhibitory neurons were fully reciprocally connected both within
and between layers. Most of the analysis reported here utilized
a "5 × 4" network architecture (five ENs and five INs in layer 1
and four ENs and four INs in layer 2). In the analysis of Figure 8,
where different network sizes were explored, we simply scaled up
the number of neurons in each layer using the same connectivity
rules (Figure 8).

A two-layer, fully reciprocally connected neuronal network
architecture with self-recurrent connections (autapses) was also
investigated. In this specific network architecture, in addition to
the network connectivity defined above, the excitatory neurons

TABLE 1 | Izhikevich neuron model parameters used in the evaluation of this study
(for the IZ model responses presented in Figures 3EâĂŞ-F and
Supplementary Figure 3).

IZA IZB IZC IZa IZb IZc IZd IZk

0.04 5 140 0.02 0.2 −65 8 300
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FIGURE 3 | Comparing the properties of different neuron models in isolation. (A) Pseudo-random input spike trains (six spike trains corresponding to the six sensory
inputs, with an average spike frequency of 50 Hz in each sensor). (B) The sensory input spike trains were convoluted using a kernel function (see section “Materials
and Methods”). The convoluted input responses were fed as weighted (randomly generated, mu = 0.4) EPSP inputs to the neuron model. (C) Output responses of
the LSM without dynamic leak. The red line is the mean across 50 presentations (each presentation made different by adding Gaussian noise, black lines). In this and
all panels below, tests were made for the neuron in isolation, without network connections. (D) Similar display as in (C), but for LSM with dynamic leak. (E) Similar
display as in (C), but for output responses of Izhikevich neuron model. The spike output of the Izhikevich neuron model were convoluted using a kernel function
(same kernel parameters setting as in (B). (F) Cross-correlations between the sensory input and the output responses of neuron models (illustrated in C–E).
(G) Cross-correlation between different sensory input frequencies and neuron model outputs across a range of IZ model settings, compared to the LSM with
dynamic leak. Thin blue lines indicate the cross-correlation with the sensory input for the IZ neuron model responses for each of the 405 IZ model parameter settings
(IZa, IZb, IZC, IZd , and IZk ; see section “Materials and Methods”) tested. Thick blue line indicates the mean of those cross-correlations. The red line indicates the
cross-correlation between the sensory inputs and the LSM outputs. Asterisk indicates the cross-correlation measure for the parameters chosen in Figure 3F.

projected excitatory synaptic connections onto themselves, and
inhibitory neurons projected inhibitory synaptic connections
onto themselves (Supplementary Figure 7A).

Sensory Inputs
In this article, we investigated the individual neuron responses
(Figures 2, 3 and Supplementary Figures 1–4) and network
dynamics (Figures 4–8 and Supplementary Figures 6, 7,
except Figures 7C,D) based on six sensory inputs. These
sensory inputs were pseudo-randomly generated (see below)
and provided as excitatory input to both excitatory and
inhibitory neurons. We also tested our recurrent networks
with higher input sensor density (#sensors = 6, 15, 30, and
50, Figures 7C,D), the inputs of which were also pseudo-
randomly generated.

Pseudo-Random Inputs
For the sensory inputs to the LSM and the IZ neurons,
we generated pseudorandom spike trains for several different
average frequencies (50, 100, 150, and 200 Hz, Figure 3A and
Supplementary Figure 4) with uniform normal distributions.
We used an inbuilt MATLAB function “randi” to generate the
spike time distributions in these spike trains. Furthermore, these
spikes were convoluted to resemble post-synaptic-potentials

TABLE 2 | Izhikevich neuron model parametric space explored in the evaluation of
this study (for the IZ model presented in Figure 3G).

IZa 0.02 0.07 0.1 – –

IZb 0.2 0.225 0.25 – –

IZc −65 −55 -50 – –

IZd 2 4 8 – –

IZk 100 200 300 400 500

(time continuous activity) using the following kernel equation
(Mazzoni et al., 2008),

ai =
τkm

τkd−τkr
∗

[
exp

(
−t−τkl−t∗

τkd

)
−exp

(
−t−τkl−t∗

τkr

)]
(6)

Where, t∗ is the input spike time,τkd is the decay time (4 ms),τkr
is the rise time (12.5 ms) and τkm is the constant to calculate
ration between rise time and decay time (21.3 ms), and τkl is
the latency time which is zero in this case. These values were
chosen based on the previous work (Rongala et al., 2018). The
convoluted sensor signal was then provided as synaptic input to
the neuronal network.

In order to analyze the network dynamics, we provided
50 presentations of the same pseudorandom spike trains
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FIGURE 4 | Activity dynamics in a sample recurrent network. (A) Principles of
the connectivity structure in the recurrent network studied. Note that the
default network, and the one used in panels (B–I) of this figure, contained
excitatory neurons (five in the input layer, four in the output layer) and inhibitory
neurons (same numbers) with the same connectivity, whereas only the
neurons in layer 1 also received sensory inputs (the same six sensory inputs to
each neuron) with all synapses having randomly generated Gaussian weights
(mu = 0.4). (B) Frequency plot of the activity in an excitatory neuron.
(C) Similar plot for an inhibitory neuron. (D) Raw data plots for sample signals
in the excitatory neuron generated at the indicated presentation #. (E) Similar
plot for the inhibitory neuron. (F–I) Similar plots as in (B–E) but when all the
neurons were modeled to include the neuronal dynamic leak.

(for each given average frequency). Each input presentation
differed by an addition of random noise of ±10 ms to
individual spike times (Figures 3C–E, black lines) to the
reference pseudorandom spike train (Figure 3A, for spike

frequency of 50 Hz). These presentations were concatenated
without pause or reset between them, so the input subdivided
into 50 presentations was in effect one long presentation
lasting for 50,000 ms.

To allow a comparison with the output of the LSM, we
convoluted the output spike trains also of the spiking neuron
model (IZ). The process of convolution emulated a post
synaptic response that would have been generated in a receiving
neuron, whereas the LSM output itself directly corresponded
to such a signal.

Synaptic Weights
All excitatory and inhibitory synaptic weights in the network
were randomly distributed, including the excitatory sensory
inputs to only the layer 1 neurons. The synaptic weight
distributions were either normal, lognormal or binary. The
normal and the log-normal distributions were generated for
different mean weights (µ) (values between 0.1 and 0.5) each
with a fixed coefficiency of variation (cv) of 20% [where sigma
(σ) = (cv / 100)∗µ]. For binary distributions, we tested different
probabilities of high weight synapses (w = 1) (probability varied
between 10 and 50%), whereas the remainder of the synapses
were set to zero weight (Figures 5A–C).

Statistical Analysis
Cross-Correlation
The correlation index measure was used to compute the
similarity of the responses of the neuron models (Figures 3F,G
and Supplementary Figure 4E). The correlation between two
signals was computed with an inbuilt MATLAB function “xcorr”
(with zero lag), which produces values from 0 (uncorrelated)
to 1 (identical).

Frequency Analysis
We performed a continuous wavelet transform (using an inbuilt
MATLAB function “cwt”) in order to define the frequency
composition of the input signal over time. The wavelet transform
was used to extract the power of each frequency band as a
function of time for the continuous neuron activity signal. Here,
we reported (Figures 4–8 and Supplementary Figures 5–7), for
each frequency band, the maximum power of the signal within
each input presentation time window (1 s).

In Supplementary Figure 5, the frequency analysis was
performed on the sensory input signals (on the convoluted
signal for each given average spiking frequency) across all the 6
sensory inputs for all 50 presentations (see section “Materials and
Methods”). The maximum power was computed for each sensory
input and each presentation, and the average across all six input
sensors was reported in this figure.

In Figure 4, the frequency analysis was performed on
the activity of one excitatory and one inhibitory neuron
in layer 1 (Figures 4B,C,F,G) across all frequencies and
presentations. Supplementary Figure 6 display the frequency
analysis performed on the activity of all excitatory and inhibitory
neurons in the network of Figure 4A. A similar frequency
analysis was carried out in Figures 5–8 and Supplementary
Figure 5, which show the average maximum power calculated
across all neurons in all layers and across all 50 presentations.
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FIGURE 5 | High frequency components and the effect of dynamic leak across different synaptic weight distributions. (A–C) The three types of synaptic weight
distributions that were explored (Gaussian, Log-Normal, and Binary) and the average weight distributions for each mean weight value (five weight distributions were
generated for each mean weight). (D) The frequency power distributions across all the above synaptic weight distributions. Color keys for the different average
synaptic weights are in (A–C). (E) Similar display as in (C), for the same networks but with the neuron model with dynamic leak. Dashed orange traces in (D,E) show
the corresponding frequency power distribution for the sensory inputs at 50 Hz, averaged across the six sensory inputs, for comparison.

RESULTS

Comparison to Spiking Neuron Models
We first characterized the input-output relationship of the
neuron model in isolation (Figure 3) for a standardized sensor
input, consisting of randomized spike times in six sensor
neurons that were convoluted to time-continuous input signals.
These were synaptically integrated by a single modeled neuron
(Figures 3A,B). The activity of the non-spiking LSM (linear
summation neuron model) was compared with that of a spiking
neuron model (Izhikevich, IZ), in terms of how well their
output (Figures 3C–E) correlated with the input (Figure 3F).
The IZ neuron model was chosen for this comparison, as it
was created to mimic a rich neuronal response dynamics with
computational efficiency (Izhikevich, 2003). The spikes generated
by the IZ neuron model were convoluted (see section “Materials
and Methods”) to a time continuous signal (Figure 3E) in order
for it to be comparable with the output of the LSM.

Both neuron models (LSM and IZ) were provided with the
same pseudo-random sensory inputs (average firing frequency of
50 Hz in each of six sensors, see section “Materials and Methods”)
connected via six different synapses (Figure 3B). The IZ neuron
model parameters for this particular comparison (Figures 3E,F)
were chosen to mimic the regular spiking behavior (hypothesized
to be a common neuron behavior in cortex; Izhikevich, 2003,
2004). The LSM neuron without dynamic leak reproduced on
average a close representation of the source convolution signal
for the input but the individual traces were considerably noisier
without dynamic leak (Figure 3C) than with dynamic leak
(Figure 3D). The main difference between the LSM and the IZ
neuron model responses was that the IZ neuron model tended
to create output dynamic behavior that was not present in the
input signal (Figures 3B,E), a consequence of the binary nature
of the spike output. A cross-correlation analysis between the
neurons’ responses (Figure 3F) showed that the IZ neuron model
reflected the input signal less faithfully than the LSM. Note that

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 656401

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-656401 May 19, 2021 Time: 14:7 # 8

Rongala et al. Neuron Leak Stabilizes Recurrent Networks

FIGURE 6 | Impact of conduction delays on the frequency distribution. (A) Frequency distributions for the same network (network settings as in Figure 4) with
different average conduction delays between neurons. The vertical dashed lines indicate the supplementary frequency peaks (frequency peaks that were not present
in the input sensory data / network dynamics without conduction delays) of the high-frequency component for addition of a mean conduction delay to the network.
(B) Data for the same networks and delays when the neuron model included dynamic leak.

the cross-correlation is slightly poorer for the LSM with dynamic
leak than without, which is due to that the some of the fine-timing
details of the high frequency components of the underlying
convoluted signal is slightly filtered by the dynamic leak.

We tested if this observation depended on the frequency of
the spiking in the sensory inputs. The LSM consistently showed
a higher correlation with the input signal than the IZ neuron
model across a range of input spike frequencies (Supplementary
Figure 3). Next we tested if the specific parameters chosen for
the IZ neuron model (Figure 3E, also indicated by an asterisk
in Figure 3G) were responsible for these results (Figure 3F).
Therefore, we tested a range of parameter settings (405 different
parameter combinations), which are known to reproduce specific
output dynamics (bursting, for example) observed in a variety of
neuron types in vitro (Izhikevich, 2003). The correlation analysis
showed that LSM was more consistent than the IZ model in
maintaining high correlation with the sensory inputs across the
full range of sensory input spike frequencies (Figure 3G). The
exception was the highest sensory input frequencies, but that can
be explained by that the dynamics of the sensory input diminishes
due to the density of the inputs (Supplementary Figures 3A–
D), as previously described also for neurons in vivo (Bengtsson
et al., 2011). This effect, which we will refer to as the input density
problem, is also evident in Figure 3G.

Network Dynamics (With and Without
Neuronal Dynamic Leak)
We next investigated the activity dynamics of a standardized
recurrent neuronal network implemented using the LSM
(Figure 4A). The sensory input was fed as excitatory input to
both the excitatory and inhibitory neurons of the first layer

for 50 presentations, where the sequential presentation differed
by added Gaussian noise to the sensory signal (see section
“Materials and Methods”). In the network with the neuron model
without dynamic leak, there was initially a gradual increase in
the power across the higher frequency components of the activity
in both excitatory and inhibitory neurons (Figures 4B,C) (more
extensively illustrated in Supplementary Figure 6, where the
first few presentations of sensory input evoked a lower power
response). These high frequency components were not present in
the sensory input (Supplementary Figure 5A) and were therefore
generated by the network, most likely as a consequence of the
parallel excitatory and inhibitory connections, which would be
expected to lead to some degree of signal derivation (Wehr
and Zador, 2003). Interestingly, in the illustrated IN1 the high
frequency components gradually built up (until presentation #10,
approximately) and then faded away (after presentation #20,
approximately), despite that the average intensity of the sensory
input did not vary over time, which suggests a relatively rich
internal dynamics in this type of recurrent network, despite its
limited size. In neurons of the second layer, high frequency
components typically faded away more slowly (Supplementary
Figure 6). The appearance of these high frequency components
was sometimes associated with the appearance of transients in
the neuron activity (Figures 4D,E). In contrast, in the same
network but with the neuron model including the dynamic leak,
the transients and the high-frequency components of the neuron
activity disappeared (Figures 4F–I). Hence, the low-pass filtering
effect of the dynamic leak “rescued” the recurrent network from
generating spurious high-frequency components.

The recurrent connections of the network were likely
strongly contributing to these high-frequency components. An
extreme case of recurrent connectivity is when a neuron
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FIGURE 7 | Network activity dynamics increased when sensor input density
decreased. (A) The high frequency components became more prominent with
lower average spike frequencies in the sensor input. (B) Neuronal dynamic
leak resulted in disappearance of the high-frequency components across all
input spike frequencies. (C) The high frequency components also became
more prominent with lower number of sensory inputs, while a very high
number of sensor inputs substantially reduced overall neuron activity
dynamics. (D) Introduction of neuronal dynamic leak resulted in
disappearance of the high-frequency components irrespective of the number
of sensory inputs. The network settings for this analysis were similar to
Figure 4, except for sensory input.

makes synapse on itself (autapse). It is not clear to what
extent autapses exist in adult neuronal circuitry, but they
have been shown to be present in early development (Lübke
et al., 1996; Tamás et al., 1997) and they are widely used in
the field of RNN/computational neuroscience (Graves, 2012).
To explore the impact of autapses we used the exact same
network architecture used in Figure 4 but added autapses to all
neurons (Supplementary Figure 7A). In this scenario, the high-
frequency components were strongly amplified (Supplementary
Figures 7B–E). However, in the same network with the
neuron model with the dynamic leak, the transients and the
high-frequency components of the neuron activity were again
effectively removed (Supplementary Figures 7F–I). We did not
explore networks with autapses any further.

We next compared the frequency power distributions of
the neuronal activity in this recurrent network across a range
of different synaptic weight distributions (Figure 5). We
studied three different types of synaptic weight distributions
(Gaussian, log-normal, and binary distributions). For each
type of distribution, we tested five different mean synaptic
weights (Figures 5A–C). Moreover, for each given synaptic
weight distribution and mean weight, we generated five random
weight distributions. The average signal of these five random

weight distributions was used to calculate each frequency
power distribution illustrated (Figures 5D,E), where each line
represents the average activity across all the neurons of the
network (Figures 5D,E). In the network with the neuron model
without dynamic leak (Figure 5D), the relative power of the
high-frequency components was amplified for synaptic weight
distributions at mean synaptic weights of 0.3–0.4 or above
(µ ≥ 0.4 for Gaussian and µ ≥ 0.3 for log-normal distributions)
and for p > 10% for binary distribution, compared to the
sensory input (Supplementary Figure 5). For other synaptic
weight distributions (µ = 0.1 for Gaussian and log-normal
distributions and for p = 10% for binary distributions, for
example), there was much lower overall activity in the network,
which could be the reason why the high frequency components
were not induced in these networks. In the network with the
neuron model with the dynamic leak component, the transients
and the high-frequency components of the neuron activity
disappeared for all settings (Figure 5E), though the setting of
the dynamic leak component used also appeared to over-dampen
the sensory input dynamics between 20 and 200 Hz. Note that
each curve in Figures 5D,E represents the mean across five
randomized repetitions. Supplementary Figure 8 instead shows
the frequency power distribution of the neuronal activity for each
individual network sorted by synaptic weight distribution. The
overlap between these frequency power distribution curves across
randomized weights and different distribution means implies that
there was no simple linear relationship between the network
structure and the spurious high frequency components.

To further explore if the high-frequency components observed
were induced by the recurrent network, we tested if we could
affect the “center of gravity” of the high-frequency components
by introducing different conduction delays in signal transmission
between the neurons (Figure 6). In the brain in vivo, these
would correspond to the axonal conduction delays and synaptic
delays combined. The delays were randomized between all
the neurons, and several different mean delays were tested in
different simulations. Interestingly, a supplementary frequency
peak component (frequency peaks that were not present in
the input sensory data / network dynamics without conduction
delays, indicated with dashed vertical lines in Figure 6A) was
observed without dynamic leak. These supplementary frequency
peaks were approximately inversely proportional to the mean
conduction delay. From previous studies (Jirsa and Stefanescu,
2011; Petkoski et al., 2018) we know that conduction delays could
introduce such additional dynamics into the recurrent networks.
These peaks were removed by adding dynamic leak (Figure 6B).

The high frequency components also appeared for lower
average sensor input spike frequency (50 and 100 Hz, Figure 7A)
and for lower number of sensory inputs per neuron (nSensors = 6
and 15, Figure 7C). In contrast, for higher input spike
frequencies (150 and 200 Hz) and higher number of sensory
inputs (nSensors = 30 and 50) the increased density of the
inputs resulted in a paradoxical decrease in the power of the
neuron activity across all frequencies analyzed (i.e., as shown in
Supplementary Figure 1), most likely due to the large number
of randomized inputs regressing toward the constant mean
frequency of each sensory signal. In each case, in the network
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FIGURE 8 | Activity frequency distributions altered with the scale of the networks. (A,E) For networks with Gaussian synaptic weight distribution of mean weight
mu = 0.3 and 0.4, respectively, the high frequency components could appear without dynamic leak, regardless of network size. (B,F) Introduction of the neuronal
dynamic leak (τ dyn = 1/100) “rescued” the networks from these high-frequency components. (C,G) The dynamic leak constant was adapted based on the square
root of number of synapses (i). (D,H) The dynamic leak constant was adapted based on the total number of synapses (i). Dashed orange traces in all plots show the
corresponding frequency power distribution for the sensory inputs at 50 Hz, averaged across the six sensory inputs, for comparison.

with the neuron model with the dynamic leak component, the
high-frequency components of the neuron activity disappeared
for the sensor input configurations where it had been present
(Figures 7B,D).

We also explored if the size of the network could be a
factor for the appearance of the high frequency components.
We found that these high frequency components appeared for
different network sizes and that in those cases the network
activity was “rescued” when the LSM was implemented with the
dynamic leak (Figure 8). Depending on the specific synaptic
weight distribution, the high frequency components became
unequally dominant for different network sizes (Figures 8A,E)
according to unclear relationships. The largest network as a
rule had the weakest overall dynamics, which could be due
to the same input density problem discussed above, where
the density of synaptic input increased as the larger network
has a higher number of recurrent synaptic inputs per neuron,
which caused the dynamics of the neuron activity to go down.
As there is a tendency for membrane time constants to grow
with the size of the neuron (Zhang, 2004), we scaled the
τDyn with the network size (as the neurons of the larger
networks had a higher number of synapses) (Figures 8C,D,G,H,
for two different weight distributions). A moderate scaling of
the τDyn (with the square root of the number of synapses,
Figures 8C,G) actually increased the dynamics of some network
sizes, while eliminating high frequency components. In contrast,
a linear scaling (Figures 8D,H) instead appeared to dampen such
dynamics and, unsurprisingly, low pass-filtered also signals well
below 100 Hz for the largest networks.

DISCUSSION

We explored the properties of a non-spiking neuronal model
derived from the differential conductance-based H-H model
when deployed in various recurrent neuronal networks. We
found that in these recurrent networks, many different factors
would tend to trigger network induction of high frequency
signal components of a somewhat unpredictable magnitude and
distribution (i.e., Figures 5–8 and Supplementary Figure 8).
These signal components were not present in the input data
(Supplementary Figure 5) and sometimes peaked to create
overt spurious transients (Figures 4B,C). The dynamic leak in
our neuron model invariably “rescued” the recurrent networks
from their tendency to self-generate these high-frequency
signal components (Figures 4–8 and Supplementary Figure 7).
Corresponding to the capacitive component and the ion channels
of the membrane circuit, dynamic leak is an inevitable feature of
real neurons. Furthermore, this low-pass filter component made
the behavior of recurrent networks more predictable for networks
of different sizes.

We worked under the scenario that neuronal networks in
the brain are recurrent and that excitatory and inhibitory
connections are both pervasive, without any a priori assumed
structure. Our network architecture contained the circuitry
elements of previously reported “classical” network connectivity
patterns (feedback and feedforward inhibition, for example).
Feed-forward and feedback inhibition running in parallel with
excitatory connections was likely the main network feature
that caused the signal derivation effects/the high frequency
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components in the networks without the dynamic leak. The
inclusion of autapses in the recurrent network strongly amplified
these high frequency components (Supplementary Figure 7),
presumably primarily through self-amplification of excitatory
neurons. But note that in a recurrent network, any local circuity
feature will at the global level automatically result in other
functional network features as well. Hence, in contrast to a
non-recurrent, feed forward neuronal network, in a recurrent
network these circuitry features will hence become less clear-cut
from a functional point of view, which could cause additional
dynamic network effects that for example could explain our
observations of gradual build-up of high frequency power
components (Figure 4 and Supplementary Figure 5) while there
was steady sensory input level to keep the network activity up.
However, understanding such network dynamics at a deeper
level was outside the scope of this paper, but would need to be
addressed if such networks are to be used in a functional setting.

In our recurrent networks, apparently spurious high
frequency components could be induced for different types
of synaptic weight distributions, delays between neurons,
sensory input densities and network sizes. It was hard to predict
under what exact conditions such high frequency components
would become more or less dominant (i.e., Figure 8 and
Supplementary Figure 8), but in each case the dynamic leak
effectively canceled them out. From the point of view of the
functionality of a processing recurrent network, the fact that
the frequency distribution of any given network did not match
that of the sensory input is not automatically to be considered
a disadvantage because the goal of a processing network would
not be to perfectly replicate the sensory input. However, the fact
that these high frequency components sometimes took the shape
of clear-cut transients with no obvious counterpart in the sensor
signal suggests that, at least in part, they should be considered
spurious, i.e., noise injected into the signal due to the dynamics
of the specific network.

In some cases, the activity of the network became highly
suppressed relative to the sensory input (i.e., for low mean
weights in Figure 5 and for the largest network in Figure 8).
This effect can be ascribed to the input density problem, i.e.,
when too many unrelated but continuously active synaptic inputs
converge on the same neuron, their signal dynamics would
tend to cancel out, leaving the neuron with very little signal
dynamics (Bengtsson et al., 2011). As these signals, due to
the network structure, are paralleled by inhibitory connections,
when the signal dynamics is lost, inhibition and excitation
cancel each other out and the activity dynamics is lost in the
network as a whole.

How would spiking neuron networks fare with respect to
rescuing a recurrent network from spurious high frequency
components? The phasic nature of discrete spike output would
be expected to worsen the problem, whereas refractoriness would
tend to dampen it. Refractoriness could certainly rescue the
system from the extreme transients observed in networks that
included autapses. Refractoriness, however, would not rescue
the system from high frequency components generated through
longer range recurrent excitatory loops.

Global stability has long been a concern in recurrent neural
networks (RNNs) due to the non-linear dynamics that can arise

within such networks due to the recurrency and the resulting
feedback loops (Shen and Wang, 2011; Zhu and Shen, 2013).
Periodic oscillations and stability issues in RNNs can arise,
for example, as a consequence of input noise (Pham et al.,
1998) and neuron activation delays (Gopalsamy and Leung,
1996). Moreover, such oscillations are inherent to any dynamical
system with recurrency and amplification, such as parasitic
oscillations in electronics and steady-state error in control
theory. Apparently, the central nervous system, with prodigious
recurrent loops (see section “Introduction”) and intrinsic noise,
found a way to avoid such oscillations. In this study we explored
the possibility that neuronal leak dampens such oscillations in a
recurrent neuronal network.

Recurrent neuronal networks with balanced excitatory and
inhibitory synaptic connections have been extensively studied
previously (Brunel, 2000; Vogels and Abbott, 2005; Vogels
et al., 2011; Rubin et al., 2017), using spiking neuron
models (employing integrate-and-fire or related mechanisms
for the spike generation). In these studies, the recurrent
connections were sparsely distributed with an overall connection
probability of 1–2%, and a ratio of 4:1 excitatory to inhibitory
interneurons. These studies point out that factors such as high
connection probability and unbalanced excitation-inhibition
tend to produce network instability (Rubin et al., 2017) and
in some cases failure in signal propagation across the layers
of those neuronal networks (Vogels and Abbott, 2005). From
the stability we observed across a wide range of recurrent
network configurations, always at 100% connection probability
(though weighted), it would seem that the LSM with dynamic
leak would be beneficial for ensuring stable recurrent neuronal
network behavior across a range of network sizes and density
of connectivity.

The present findings suggest that the biological feature of
neuronal dynamic leak, which causes the polarization (i.e., the
activity) of the neuron to settle toward resting potential with a
time constant, is an important functional feature. It allows brain
networks to fully utilize recurrent neuronal network architectures
with variable numbers of participating neurons without risking
self-generated noise embodied as high frequency components
and spurious transients.
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Supplementary Figure 1 | Signal similarity between the LSM and H-H model.
A comparison between the output responses for LSM (green line is the mean
across 50 presentations) and the H-H (derived using backward Euler method, blue
line is the mean across 50 presentations), for a given pseudo-random sensory
input at 50 Hz for each of six sensors (see Figure 3). The responses of the LSM
output were offset by 0.1 activity (a.u.) in order to visualize the coherence between
the responses of both neuron models. The cross correlation (with
zero lag) was 0.99.

Supplementary Figure 2 | Impact of the value of kstatic on the internal activity of
the LSM for a given sensory input.

Supplementary Figure 3 | Impact of the value of τdyn on the internal activity of
the LSM for a given sensory input.

Supplementary Figure 4 | Comparison of the non-spiking and the spiking
neuron model outputs for different sensory input frequencies. (A–D) Neuron
outputs in response to different sensory input frequencies. (E) Cross-correlation
between sensory inputs and the neuron model outputs.

Supplementary Figure 5 | Frequency analysis of the sensory inputs. (A)
Time-continuous frequency power analysis for each of the six sensory inputs
(spike frequency = 50 Hz) across the 50 presentations used in the analysis of the
network activity. (B) Frequency power analysis (using continuous wavelet
transform, see section “Materials and Methods”), of sensory inputs. The plots
show the average power of the activity across all the six sensors, for each of the
four mean sensor firing frequencies, across all 50 presentations used in the
analysis of the network activity.

Supplementary Figure 6 | Frequency analysis plots of the activity in all excitatory
neurons (EN1 − EN9) and inhibitory neurons (IN1 − IN9) for the network shown in
Figure 4A.

Supplementary Figure 7 | Activity in recurrent networks with autapses.
(A) Principles of the connectivity structure in the recurrent network studied. The
network presented here is a fully connected network as in Figure 4, with the
addition of self-recurrent excitatory and inhibitory synapses (in excitatory and
inhibitory neurons, respectively). (B) Frequency plot of the activity in an excitatory
neuron. (C) Similar plot for an inhibitory neuron. (D) Raw data plots for sample
signals in the excitatory neuron generated at the indicated presentation #. (E)
Similar plot for the inhibitory neuron. (F–I) Similar plots as in (B–E) but when all the
neurons were modeled with the dynamic leak.

Supplementary Figure 8 | High frequency components and the effect of
dynamic leak across different specific synaptic weight distributions. The synaptic
weight distributions used were as shown in Figures 5A–C, but instead of
representing the five random simulations for each setting as an average, we here
show them individually. (A) The frequency power distributions across all indicated
synaptic weight distributions for five randomized repetitions each. Color keys for
the different average synaptic weights are the same as in Figures 5A–C. (B)
Similar display as in (A), for the same networks but with the neuron model
with dynamic leak.

Supplementary Table 1 | H-H Model variable definitions (for the H-H neuron
model derivation, presented in Appendix 1).

REFERENCES
Allen, G. I., and Tsukahara, N. (1974). Cerebrocerebellar communication systems.

Physiol. Rev. 54, 957–1006. doi: 10.1152/physrev.1974.54.4.957
Anderson, J. S., Carandini, M., and Ferster, D. (2000). Orientation tuning of

input conductance, excitation, and inhibition in cat primary visual cortex.
J. Neurophysiol. 84, 909–926. doi: 10.1152/jn.2000.84.2.909

Bengtsson, F., Ekerot, C. F., and Jörntell, H. (2011). In vivo analysis of inhibitory
synaptic inputs and rebounds in deep cerebellar nuclear neurons. PLoS One
6:e18822. doi: 10.1371/journal.pone.0018822

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative map
of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453. doi:
10.1523/JNEUROSCI.1400-04.2004

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. doi: 10.1023/A:
1008925309027

Chakravarthy, N., Tsakalis, K., Sabesan, S., and Iasemidis, L. (2009). Homeostasis of
brain dynamics in epilepsy: A feedback control systems perspective of Seizures.
Ann. Biomed. Eng. 37, 565–585. doi: 10.1007/s10439-008-9625-6

Chowdhury, S. S., Lee, C., and Roy, K. (2020). Towards understanding the effect of
leak in spiking neural networks. arXiv [Preprint]. arXiv2006.08761.

Douglas, R. J., and Martin, K. A. C. (2009). Inhibition in cortical circuits. Curr. Biol.
19, R398–R402. doi: 10.1016/j.cub.2009.03.003

Gopalsamy, K., and Leung, I. (1996). Delay induced periodicity in a neural netlet
of excitation and inhibition. Phys. D Nonlinear Phenom. 89, 395–426.

Graves, A. (2012). “Supervised sequence labelling,” in Supervised Sequence
Labelling with Recurrent Neural Networks., (Berlin, Heidelberg: Springer), 5–13.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane
current and its applicaiton to conduction and excitation in nerve. J. Physiol. 117,
500–544. doi: 10.1016/S0092-8240(05)80004-7

Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., and Shepherd,
G. M. G. (2013). Organization of cortical and thalamic input to pyramidal
neurons in mouse motor cortex. J. Neurosci. 33, 748–760. doi: 10.1523/
JNEUROSCI.4338-12.2013

Isaacson, J. S., and Scanziani, M. (2011). How inhibition shapes cortical activity.
Neuron 72, 231–243. doi: 10.1016/j.neuron.2011.09.027

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Jirsa, V. K., and Stefanescu, R. A. (2011). Neural population modes capture
biologically realistic large scale network dynamics. Bull. Math. Biol. 73,
325–343.

Jörntell, H. (2017). Cerebellar physiology: links between microcircuitry properties
and sensorimotor functions. J. Physiol. 595, 11–27. doi: 10.1113/JP27
2769

Jörntell, H., and Ekerot, C. F. (2003). Receptive field plasticity profoundly alters
the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo.
J. Neurosci. 23, 9620–9631. doi: 10.1523/jneurosci.23-29-09620.2003

Kar, K., and DiCarlo, J. J. (2020). Fast recurrent processing via ventral
prefrontal cortex is needed by the primate ventral stream for robust
core visual object recognition. bioRxiv [Preprint]. doi: 10.1101/2020.05.10.
086959

Koestinger, G., Martin, K. A. C., and Rusch, E. S. (2018). Translaminar circuits
formed by the pyramidal cells in the superficial layers of cat visual cortex. Brain
Struct. Funct. 223, 1811–1828. doi: 10.1007/s00429-017-1588-7

Lindner, B. (2014). “Low-pass filtering of information in the leaky integrate-and-
fire neuron driven by white noise,” in Understanding Complex Systems, eds
V. A. Palacios and P. Longhini (Cham: Springer). doi: 10.1007/978-3-319-029
25-2_22

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 656401

https://www.frontiersin.org/articles/10.3389/fncom.2021.656401/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncom.2021.656401/full#supplementary-material
https://doi.org/10.1152/physrev.1974.54.4.957
https://doi.org/10.1152/jn.2000.84.2.909
https://doi.org/10.1371/journal.pone.0018822
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1007/s10439-008-9625-6
https://doi.org/10.1016/j.cub.2009.03.003
https://doi.org/10.1016/S0092-8240(05)80004-7
https://doi.org/10.1523/JNEUROSCI.4338-12.2013
https://doi.org/10.1523/JNEUROSCI.4338-12.2013
https://doi.org/10.1016/j.neuron.2011.09.027
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1113/JP272769
https://doi.org/10.1113/JP272769
https://doi.org/10.1523/jneurosci.23-29-09620.2003
https://doi.org/10.1101/2020.05.10.086959
https://doi.org/10.1101/2020.05.10.086959
https://doi.org/10.1007/s00429-017-1588-7
https://doi.org/10.1007/978-3-319-02925-2_22
https://doi.org/10.1007/978-3-319-02925-2_22
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-656401 May 19, 2021 Time: 14:7 # 13

Rongala et al. Neuron Leak Stabilizes Recurrent Networks

Liou, J. Y., Smith, E. H., Bateman, L. M., Bruce, S. L., McKhann, G. M., Goodman,
R. R., et al. (2020). A model for focal seizure onset, propagation, evolution, and
progression. Elife 9:e50927. doi: 10.7554/eLife.50927

Lübke, J., Markram, H., Frotscher, M., and Sakmann, B. (1996). Frequency and
dendritic distribution of autapses established by layer 5 pyramidal neurons in
the developing rat neocortex: Comparison with synaptic innervation of adjacent
neurons of the same class. J. Neurosci. 16, 3209–3218. doi: 10.1523/jneurosci.16-
10-03209.1996

Mazzoni, A., Panzeri, S., Logothetis, N. K., and Brunel, N. (2008). Encoding of
naturalistic stimuli by local field potential spectra in networks of excitatory
and inhibitory neurons. PLoS Comput. Biol. 4:239. doi: 10.1371/journal.pcbi.
1000239

Naundorf, B., Wolf, F., and Volgushev, M. (2006). Unique features of action
potential initiation in cortical neurons. Nature 440, 1060–1063. doi: 10.1038/
nature04610

Nilsson, M. N. P., and Jörntell, H. (2021). Channel current fluctuations conclusively
explain neuronal encoding of internal potential into spike trains. Phys. Rev. E
103:22407.

Obermayer, J., Heistek, T. S., Kerkhofs, A., Goriounova, N. A., Kroon, T., Baayen,
J. C., et al. (2018). Lateral inhibition by Martinotti interneurons is facilitated
by cholinergic inputs in human and mouse neocortex. Nat. Commun. 9:4101.
doi: 10.1038/s41467-018-06628-w

Okun, M., and Lampl, I. (2008). Instantaneous correlation of excitation and
inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11,
535–537. doi: 10.1038/nn.2105

Petkoski, S., Palva, J. M., and Jirsa, V. K. (2018). Phase-lags in large scale brain
synchronization: Methodological considerations and in-silico analysis. PLoS
Comput. Biol. 14:e1006160.

Pham, J., Pakdaman, K., and Vibert, J.-F. (1998). Noise-induced coherent
oscillations in randomly connected neural networks. Phys. Rev. E 58:
3610.

Pi, H. J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A.
(2013). Cortical interneurons that specialize in disinhibitory control. Nature
503, 521–524. doi: 10.1038/nature12676

Rongala, U. B., Spanne, A., Mazzoni, A., Bengtsson, F., Oddo, C. M., and Jörntell,
H. (2018). Intracellular dynamics in cuneate nucleus neurons support self-
stabilizing learning of generalizable tactile representations. Front. Cell. Neurosci.
12:210. doi: 10.3389/fncel.2018.00210

Rubin, R., Abbott, L. F., and Sompolinsky, H. (2017). Balanced excitation and
inhibition are required for high-capacity, noise-robust neuronal selectivity.
Proc. Natl. Acad. Sci. U.S.A. 114, E9366–E9375. doi: 10.1073/pnas.170584
1114

Saarinen, A., Linne, M. L., and Yli-Harja, O. (2008). Stochastic differential equation
model for cerebellar granule cell excitability. PLoS Comput. Biol. 4:e1000004.
doi: 10.1371/journal.pcbi.1000004

Shen, Y., and Wang, J. (2011). Robustness analysis of global exponential
stability of recurrent neural networks in the presence of time delays
and random disturbances. IEEE Trans. Neur. Netw. Learn. Syst. 23,
87–96.

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.
3:e68. doi: 10.1371/journal.pbio.0030068

Spanne, A., and Jörntell, H. (2015). Questioning the role of sparse coding in the
brain. Trends Neurosci. 38, 417–427. doi: 10.1016/j.tins.2015.05.005

Spanne, A., Geborek, P., Bengtsson, F., and Jörntell, H. (2014). Spike generation
estimated from stationary spike trains in a variety of neurons In vivo. Front.
Cell. Neurosci. 8:199. doi: 10.3389/fncel.2014.00199

Steriade, M. (1997). Synchronized activities of coupled oscillators in the cerebral
cortex and thalamus at different levels of vigilance. Cereb. Cortex. 7, 583–604.
doi: 10.1093/cercor/7.6.583

Sultan, K. T., and Shi, S. H. (2018). Generation of diverse cortical inhibitory
interneurons. Wiley Interdiscip. Rev. Dev. Biol. 7:e306. doi: 10.1002/wdev.306

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. Adv. Neur. Inform. Proces. Syst.

Swadlow, H. A. (2003). Fast-spike interneurons and feedforward inhibition in
awake sensory neocortex. Cerebral Cortex 13, 25–32. doi: 10.1093/cercor/
13.1.25

Tamás, G., Buhl, E. H., and Somogyi, P. (1997). Massive autaptic self-innervation
of GABAergic neurons in cat visual cortex. J. Neurosci. 17, 6352–6364. doi:
10.1523/jneurosci.17-16-06352.1997

Tougaard, J. (2002). Signal detection theory, detectability and stochastic
resonance effects. Biol. Cybern. 87, 79–90. doi: 10.1007/s00422-002-
0327-0

Vogels, T. P., and Abbott, L. F. (2005). Signal propagation and logic gating in
networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–10795. doi: 10.
1523/JNEUROSCI.3508-05.2005

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W.
(2011). Inhibitory plasticity balances excitation and inhibition in sensory
pathways and memory networks. Science 1569:334. doi: 10.1126/science.12
11095

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies tuning and
sharpens spike timing in auditory cortex. Nature 426, 442–446. doi: 10.1038/
nature02116

Zhang, Z. W. (2004). Maturation of layer V pyramidal neurons in the rat prefrontal
cortex: intrinsic properties and synaptic function. J. Neurophysiol. 91, 1171–
1182. doi: 10.1152/jn.00855.2003

Zhu, J. J., and Lo, F. S. (2000). Recurrent inhibitory circuitry in the deep layers of
the rabbit superior colliculus. J. Physiol. 523(Pt 3), 731–740. doi: 10.1111/j.1469-
7793.2000.00731.x

Zhu, S., and Shen, Y. (2013). Robustness analysis for connection weight matrices of
global exponential stability of stochastic recurrent neural networks. Neur. Netw.
38, 17–22.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Rongala, Enander, Kohler, Loeb and Jörntell. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 656401

https://doi.org/10.7554/eLife.50927
https://doi.org/10.1523/jneurosci.16-10-03209.1996
https://doi.org/10.1523/jneurosci.16-10-03209.1996
https://doi.org/10.1371/journal.pcbi.1000239
https://doi.org/10.1371/journal.pcbi.1000239
https://doi.org/10.1038/nature04610
https://doi.org/10.1038/nature04610
https://doi.org/10.1038/s41467-018-06628-w
https://doi.org/10.1038/nn.2105
https://doi.org/10.1038/nature12676
https://doi.org/10.3389/fncel.2018.00210
https://doi.org/10.1073/pnas.1705841114
https://doi.org/10.1073/pnas.1705841114
https://doi.org/10.1371/journal.pcbi.1000004
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.1016/j.tins.2015.05.005
https://doi.org/10.3389/fncel.2014.00199
https://doi.org/10.1093/cercor/7.6.583
https://doi.org/10.1002/wdev.306
https://doi.org/10.1093/cercor/13.1.25
https://doi.org/10.1093/cercor/13.1.25
https://doi.org/10.1523/jneurosci.17-16-06352.1997
https://doi.org/10.1523/jneurosci.17-16-06352.1997
https://doi.org/10.1007/s00422-002-0327-0
https://doi.org/10.1007/s00422-002-0327-0
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
https://doi.org/10.1126/science.1211095
https://doi.org/10.1126/science.1211095
https://doi.org/10.1038/nature02116
https://doi.org/10.1038/nature02116
https://doi.org/10.1152/jn.00855.2003
https://doi.org/10.1111/j.1469-7793.2000.00731.x
https://doi.org/10.1111/j.1469-7793.2000.00731.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-656401 May 19, 2021 Time: 14:7 # 14

Rongala et al. Neuron Leak Stabilizes Recurrent Networks

APPENDIX 1

Neuron Model Derivation From H-H Model
We first describe the rationale for our Linear Summation neuron model (LSM). In brief, the LSM aims to provide a simple and
computationally efficient neuron model, while capturing important characteristics of H-H conductance models (Hodgkin and Huxley,
1952; Rongala et al., 2018). The membrane potential in the LSM model is normalized between +1 and -1 with a resting potential of
zero. The output of an LSM neuron is a continuous, non-spiking signal that reflects the portion of the membrane potential that exceeds
some threshold, which we assumed to be the zero resting potential. This would be suitable to represent one neuron or a population
of similarly connected neurons that is biased by background activity to be at or near spontaneous activity (such as is hypothesized for
stochastic resonance to prevent dead bands) (Tougaard, 2002). This continuous output signal is intended to reflect the mean spike
rate that a population of similarly connected neurons would transmit to other centers in the nervous system.

In H-H models the various ion channels associated with ionic pumps and leaks define a resting membrane potential where there are
no net currents. Any change in membrane potential away from this resting potential will settle back to the resting potential according
to the combined conductance of all of these ion channels, which is called the static leak. Synaptic activation leads to opening of specific
ion channels, which in the H-H models as a change of synaptic conductance. The ion(s) that are made permeable by the synapse have
a reversal potential that is different from the resting membrane potential. When the ion channels of a particular synapse are open,
the membrane potential will be driven toward that reversal potential, with a strength that depends on the strength of the synaptic
conductance relative to the static leak conductance.

The synaptic currents charge the neuron, which is modeled as a single capacitor (assuming that the electrotonic distances between
different parts of the neuron are negligible). Various synaptic signals are thus integrated and converted into a dynamically changing
membrane potential. The static leak is in parallel with this capacitor, thereby defining a time-constant τ for these dynamic changes.
The effect is that of low-pass filtering of the integrated synaptic currents (Lindner, 2014) to produce the membrane potential that
defines the output state of the neuron. In an H-H model, the output state is created by converting the membrane voltage into patterns
of spike output, with the help of a threshold for spike generation. Spike generation is omitted in the LSM model and the output of the
neuron is instead the part of the membrane potential that exceeds some threshold (herein equal to the resting membrane potential).

First, we describe a conductance-based model similar to previously presented models (Hodgkin and Huxley, 1952; Rongala et al.,
2018) and then show how a model similar to the LSM model can be derived. In this category of ion channel conductance-based
models, the dynamics of one type of ion channel is lumped together into one single conductance. Compared to other conductance-
based models, no spike generation is modeled and the neurons resting potential is set to zero. The neuron is modeled as a capacitor
with capacitance (C) and is charged by excitatory (Isyn,exc) and inhibitory synaptic currents (Isyn,inh) and discharged by a leak current
(Ileak). Therefore, the neurons membrane potential (V) measured across the capacitor follows the following equation.

C
dV
dt
= Ileak +Isyn,exc+Isyn,inh (A1)

The leak current is set proportional to the membrane potential by constant conductance gL according to Ohm’s law:

Ileak = −gLV (A2)

If the synaptic currents are zero, the neuron’s membrane potential will decay to zero. Therefore, this model neuron’s resting
membrane potential is zero. At each excitatory synapse i the firing rate of the presynaptic neuron (v+i ) produces a current. The
synapse has a baseline conductance (w+i ), called synaptic weight. This conductance is scaled by the presynaptic neuron’s firing rate.
The direction and magnitude of the current is determined by the difference between the constant reversal potential (Eexc) and the
neuron’s membrane potential. For an excitatory synapse, the current would reverse if the membrane potential rose above the positive
reversal voltage, so synaptic activity can never produce a membrane potential about the reversal potential. Therefore if the neuron has
already reached this voltage, the neuron’s voltage cannot increase further. The current contributed by an individual synapse can be
modeled as

Isyn,exci = −(V−Eexc)w+i v+i (A3)

The same model is applied for the current generated by an inhibitory synapse i, with reversal potential (Einh), synaptic weight (w−i )
and presynaptic firing rate (v−i ). The reversal potential of an inhibitory synapse is set so that the neurons potential cannot decrease
below this potential.

Isyn,inhi
= −(V−Einh)w−i v−i (A4)
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Summing all synaptic currents and plugging in the current equations into the membrane potential equation we obtain

C
dV
dt
= −gLV−

∑
i

(V−Eexc) w+i v+i +
∑

i

(V−Einh) w−i v−i (A5)

where the first sum is over all excitatory synapses and the second sum over all inhibitory synapses. In order, to show the relationship
of this equation to the LSM model, we set the leak conductance to one and replace leak conductance and membrane capacitance by
a time constant τ. The reversal potentials are set to +1 and -1 for the excitatory and the inhibitory synapses, respectively. Hence the
range of possible membrane potential is between +1 and -1, assuming that the initial voltage is also in that range.

The resulting differential equation is

τ
dV
dt
= −V+ (1−V)

∑
w+j v+j + (1+V)

∑
w−k v−k (A6)

This equation can be solved by applying the implicit Euler method. Let Vt be the membrane voltage in timestep t and h the stepsize.
The following equation must be solved for Vt+1

Vt+1 = Vt+h
1
τ

(
−Vt+1+ (1−Vt+1)

∑
w+j v+j + (1+Vt+1)

∑
w−k v−k

)
(A7)

In this case an analytic solution is possible:

Vt+1 =
Vt+

h
τ

∑
wivi

1+ h
τ
+

h
τ

∑
|wi| vi

(A8)

where both sums are over all synapses.
The parameters of this model are also listed in Supplementary Table 1. This new system has components not commonly found in

neuron models. The reason is that usually the differential equation describes an instantaneous effect of the inputs and the state of the
neuron. In this system the effect of the input on how the input is processed by the neuron in a future time step is already considered.

From the above derivation (Eq. A8) we could observe that the excitatory (Isyn,exc) and inhibitory (Isyn,inh) synaptic currents from

a conductance based neuron model (Eq. A1), can be reduced to a total synaptic weight summation
( ∑

wV
1+
∑
|w|V

)
, and that the leak

current (Ileak) (Eq. A1), which is a dynamic leak because it occurs across capacitor, can be reduced to h/τ (a dynamic leak constant,
Eq. A8; if this constant is larger than zero and smaller than one, it can be disregarded in this expression). Based on this neuron model
derivation, we propose the simplified linear summation neuron model (LSM, A10) to capture the essential dynamics of the original
H-H conductance-based model (Supplementary Figure 1). The LSM is given by two equations: LSM without dynamic leak (Eq. A9)
and LSM with dynamic leak (Eq. A10).

ANoDyn =

∑
(wiai)

1+
∑
|wiai|

(A9)

τDyn∗dADyn

dt
= −ADyn (t)+ANoDyn (t) (A10)
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