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de Rugy A, Loeb GE, Carroll TJ. Virtual biomechanics: a new
method for online reconstruction of force from EMG recordings.
J Neurophysiol 108: 3333–3341, 2012. First published September 26,
2012; doi:10.1152/jn.00714.2012.—Current methods to reconstruct
muscle contributions to joint torque usually combine electromyo-
grams (EMGs) with cadaver-based estimates of biomechanics, but
both are imperfect representations of reality. Here, we describe a new
method that enables online force reconstruction in which we optimize
a “virtual” representation of muscle biomechanics. We first obtain
tuning curves for the five major wrist muscles from the mean rectified
EMG during the hold phase of an isometric aiming task when a cursor
is driven by actual force recordings. We then apply a custom,
gradient-descent algorithm to determine the set of “virtual pulling
vectors” that best reach the target forces when combined with the
observed muscle activity. When these pulling vectors are multiplied
by the rectified and low-pass-filtered (1.3 Hz) EMG of the five
muscles online, the reconstructed force provides a close spatiotempo-
ral match to the true force exerted at the wrist. In three separate
experiments, we demonstrate that the technique works equally well
for surface and fine-wire recordings and is sensitive to biomechanical
changes elicited by a modification of the forearm posture. In all
conditions tested, muscle tuning curves obtained when the task was
performed with feedback of reconstructed force were similar to those
obtained when the task was performed with real force feedback. This
online force reconstruction technique provides new avenues to study
the relationship between neural control and limb biomechanics since
the “virtual biomechanics” can be systematically altered at will.

motor control; myoelectric control; biomechanics; reaching move-
ments; sensorimotor transformation

EVEN SIMPLE MOVEMENTS REQUIRE the coordinated recruitment of
multiple muscles. The net joint torques required to perform a
movement can be computed from the observable kinematics by
the method of inverse dynamics, but these torques might be
achieved by many different combinations of individual muscle
forces (Bernstein 1967). This is the so-called “redundancy
problem,” and how the central nervous system (CNS) selects
specific patterns of muscle activation to perform a given task
remains one of the most critical unresolved questions in motor
control. Indeed, the ability to resolve redundancy is central to
the attractiveness of several influential motor control schemes,
including optimal control, motor primitives, and hierarchical
sensorimotor control (e.g., d’Avella et al. 2003; Haruno and
Wolpert 2005; Loeb et al. 1999; Todorov 2004; Todorov and
Jordan 2002). Most previous approaches to test predictions of
these theories involved observing how muscle activation pat-

terns vary according to task under natural conditions. However,
because of the high degree of correlation among muscle acti-
vation and limb kinetics and kinematics, many theoretical
models might predict similar muscle activation solutions in a
given natural situation. A more direct test of a particular
hypothesis about the nature of the movement control system
would be to see how it responds to changes in the musculo-
skeletal plant, which could be designed to probe and disam-
biguate solutions predicted by different theoretical models.
Making such changes physically such as by surgical interven-
tion is not ethical with human subjects. Furthermore, it tends to
involve a prolonged recovery period, during which adaptations
may be occurring but cannot be studied. In this paper, we
present a virtual reality method in which subjects control an
animated model of their musculoskeletal system in real-time by
means of their electromyographic (EMG) signals.

There is extensive literature devoted to modeling methods
that allow forward simulation of joint torques or kinematics
from estimates of muscle activation. The approaches described
previously vary from, at one extreme, models that seek to
provide realistic simulations of the physiological processes of
excitation-contraction coupling and the mechanical application
of muscle forces to generate torques on the skeleton (e.g.,
Buchanan et al. 2004; Cheng and Loeb 2008; Erdemir et al.
2007; Tsianos et al. 2012) to approaches at the other extreme
that are based purely on associations between measured EMG
patterns and movement outcomes without consideration of
muscle physiology or musculoskeletal mechanics (e.g., Seifert
and Fuglevand 2002). Neither of these extreme approaches
provides a method for the online reconstruction of joint torque
from EMG records that is ideal for subsequent experimental
manipulation according to our requirements. On the one hand,
approaches based purely on statistical associations between
muscle activation and movement outcomes provide no oppor-
tunity to manipulate specific aspects of the musculoskeletal
plant. On the other hand, the accuracy of force reconstructions
produced by a comprehensive neuromuscular-skeletal model
remains contingent on accurate settings of the numerous pa-
rameters of such models, most of which are difficult to assess
on an individual basis (e.g., Sartori et al. 2012). Furthermore,
an ideal musculoskeletal model that perfectly represents a
subject’s biomechanics would still be insufficient to guarantee
the quality of reconstructions because EMG records do not
provide a perfectly accurate representation of muscle activa-
tion. For instance, EMG signals are subject to contamination
by electrical activity of nearby muscles and represent only a
fraction of all active motor units in the target muscle (Hug
2011; Staudenmann et al. 2010).
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Because an accurate biomechanical model requires an accu-
rate measurement of muscle activation for forward simulation
of muscle force, and because the means to measure muscle
activation accurately are unavailable, we designed a practical
approach whereby a virtual representation of muscle biome-
chanics was defined that best reconstructs limb force when
combined with EMG recordings. In this approach, the inaccu-
racy of the biomechanical representation is intended to com-
pensate for imperfections of EMG recordings in a manner that
best reconstructs force when both are combined. In separate
experiments, we demonstrate that the technique works in
different context of relatively low isometric force at the wrist
joint, for which the EMG to force relationship is approximately
linear. In particular, we show that the goodness of force
reconstruction was similarly high for surface and fine-wire
recordings, which are differentially affected by cross talk and
vary in the degree to which they represent activity of the
overall muscle. We also show that the technique is sensitive to
biomechanical changes elicited by a modification of the fore-
arm posture and is therefore suitable to address the important
question of how the nervous system tunes motor commands to
the biomechanics of the current posture (Buneo et al. 1997;
Sergio and Kalaska 1997, 2003). Because it starts from the
most intuitive relationship between muscle activity and force
and enables virtual change in the biomechanics of any muscle,
the technique offers novel opportunities to explore the nature
of the adaptive controller embodied by the nervous system.

MATERIALS AND METHODS

Virtual Biomechanics

Overview. Fagg et al. (2002) proposed an optimal model that
produces muscle activation patterns qualitatively similar to those
observed experimentally for the biomechanics of a known muscle
(Fig. 1A). Our virtual biomechanics technique consists in using a
similar optimization procedure but in the opposite direction, i.e., to
extract a representation of muscle biomechanics from observed mus-
cle activations (Fig. 1B) and then combine the virtual biomechanics
with real-time EMG to reconstruct force online (Fig. 2). First, we
introduce the Fagg et al. (2002) model; second, we illustrate how
using optimization in the reverse direction enables extraction of the
virtual biomechanics from muscle activations; and third, we show

how combining the virtual biomechanics with real-time EMG record-
ings enables accurate online force reconstruction.

The Fagg et al. (2002) model. For the biomechanics of a given
muscle, Fagg et al. (2002) proposed a method to determine the overall
activations of the various wrist muscles without requiring direct
information such as EMG. It is based on the assumption that the CNS
would minimize the summed squared activation across all muscles. In
this model, the extrinsic direction of action (up/down and right/left) of
each muscle i is defined by a two-element pulling vector, Pi, and
muscles contribute to the endpoint movement along their vector of
action with a length proportional to their activation levels, ai. The
endpoint movement is described by the two-element vector x:

x � �
i�A

Pi ai

where A is the set of five muscles. The authors then consider the
minimization of the following two criteria error function (endpoint
error and muscle activation):

E �
1

2
�xtarg � x �2 �

�

2
�a �2

subject to ai � 0 for all i � A, where xtarg is a vector representing the
target location, � is a regularization parameter set to 0.02, a is the
muscle activation vector, and ||.|| denotes the magnitude of a vector.
The authors showed that minimizing this cost function produced
muscle activation patterns that were qualitatively similar to those
observed experimentally in EMG recordings. In particular, these
patterns exhibit a cosinelike recruitment of muscles as a function of
movement directions and reproduce the observed discrepancies be-
tween directions for which muscles are preferentially used and their
direction of action (Fig. 1).

Extracting muscle virtual biomechanics from EMG. Assuming that
we know the muscle activation patterns (e.g., recorded experimen-
tally) but not the biomechanics, we use optimization in the direction
opposite to that used in the Fagg et al. (2002) model to extract a
representation of muscle biomechanics from the known muscle acti-
vations (Fig. 1B). This was achieved by determining the set of pulling
vectors, Pi, that resulted in the best aiming performance, i.e., that
minimizes endpoint errors, E � ||xtarg � x||2, when combined with the
actual muscle activation, a. To this end, we used a custom coordinate
descent algorithm with the following steps. 1) Assign random values
to the initial set of pulling vectors in the physiological range of muscle
force and direction. 2) Pick a muscle at random and modify its pulling
vector by changing its endpoint by a step in 4 orthogonal directions.
The target errors associated with each of the 5 pulling vectors (i.e., the

Fig. 1. Muscle biomechanics combined with muscle activity determine reaches to isometric force targets. A: Fagg et al. (2002) optimize muscle activity for the
biomechanics of a given muscle. B: we use a similar optimization procedure in the opposite direction to determine the representation of muscle biomechanics
(i.e., the muscle pulling vectors) that best reaches the force targets for a given pattern of muscle activities. ECRl, extensor carpi radialis longus; ECRb, extensor
carpi radialis brevis; FCR, flexor carpi radialis; FCU, flexor carpi ulnaris; ECU, extensor carpi ulnaris.
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original and the 4 modified for that muscle) were then calculated as
the summed squared error between targets and reconstructed reaches,
and the pulling vector that produced the lowest cost was retained.
3) One iteration of the model was said to be completed when each
muscle had been optimized once. 4) The whole model was iterated
until the overall cost converged to a low value. For the steady-state
isometric tasks presented here, an exact solution can be obtained by
separate minimization of the squared horizontal and vertical errors
using the ordinary least-squares method. For all subjects and experi-
mental sessions reported, we have checked that the coordinate descent
algorithm used successfully converged to the exact solution. The
coordinate descent method will be necessary if the virtual biome-
chanical modeling method is extended to tasks involving nonlinear
dynamic terms.

Online force reconstruction. Figure 2 illustrates how we used EMG
recordings during isometric force production at the wrist to extract the
virtual biomechanics as indicated previously and how it was com-
bined with real-time EMG to reconstruct force online. To generate the
time-independent patterns of muscle activation used to extract the
virtual biomechanics, rectified EMG for each muscle was first aver-
aged over the steady, holding phase of the force on target (i.e., during
a time window from 300 to 1,000 ms after movement onset, while the
task was to achieve force targets with a movement time between 150
and 250 ms, and to hold the force cursor on target for 1 s). As indicated
later in this section, participants performed 6 consecutive reaches to each
of the 16 targets, and averages over the 5 last reaches were used to
compute the time-independent muscle tuning curves (i.e., 1st reach
discarded). Once the virtual biomechanics were extracted, each pulling
vector is simply multiplied by ai(t) and the resultants summed to generate

the time course of the reconstructed force, F�t�̂. The activation values
ai(t) are assumed to be linearly related to the rectified and filtered (1.3-Hz
low-pass) EMG signals, normalized to the largest EMG value obtained
for each in a series of maximal voluntary contractions (MVC) in different
directions (see below).

F(t)̂ � �
i�A

Pi ai(t)

Experiments

We tested our virtual biomechanics technique for online force
reconstruction in different experimental context involving participants
to reach isometric force targets in various directions. The technique
was first evaluated with surface EMG (experiment 1, n � 6) and
second with fine-wire electrodes (experiment 2, n � 6) with the
forearm in a neutral posture (i.e., forearm midprone as displayed Fig.
2). Then, we tested the sensitivity of the technique to changes in
biomechanics elicited by variation of the forearm orientation along the
supination/pronation axis (experiment 3, n � 6). In all experiments,
the real and reconstructed forces were compared during the reaching
task performed with a visual cursor that represented the real force
produced. EMG patterns observed in that context were also compared
with EMG patterns produced when the reaching task was performed
with online reconstructed force as the visual cursor.

Subjects. Twelve healthy, right-handed subjects (all men, age
23–38 yr) volunteered for this study. When subjects participated in
more than one experiment (n � 4), testing sessions were separated by
at least 3 wk. All subjects had normal or corrected-to-normal vision.
They all gave informed written consent before the experiment, which
was approved by the local ethics committee and conformed to the
Declaration of Helsinki.

General experimental procedure. Subjects sat 80 cm from a com-
puter display positioned at eye level. The right hand was maintained
in a custom-made manipulandum with the forearm in one of three
possible positions: in a neutral position for experiments 1 and 2
(midway between pronation and supination as displayed Fig. 2) and in
80° pronation or �80° supination for experiment 3. The elbow was
kept at 110° with the forearm parallel to the table and supported by a
custom-built device similar to that used in a previous study (de Rugy
and Carroll 2010). The wrist was fixed by an array of adjustable
supports contoured to fit the hand at the metacarpal-phalangeal joints
(12 contacts) and the wrist just proximal to the radial head (10
contacts). This allowed wrist forces to be applied without the need for
a gripping force. Wrist forces were recorded using a 6-degrees-of-
freedom force/torque transducer (45E15A-I63-A 400N60S; JR3,
Woodland, CA) coupled with the wrist manipulandum.

Fig. 2. Online force reconstruction from muscle virtual biomechanics and real-time electromyograms (EMGs). Subjects produced isometric force at the wrist to
reach for 1 of 16 equally distributed target directions. Data from a force-driven condition in which the visual cursor represents the real isometric force are used
to generate the time-independent patterns of muscle activation (i.e., the muscle tuning curves) used to extract the muscle pulling vectors (i.e., virtual
biomechanics). Online force reconstruction is then obtained by multiplying the rectified filtered EMG signals to the pulling vector of each muscle. Note that EMG
signals are shown from 1 trial only, whereas EMGs from 5 consecutive trials to each of the 16 targets are used to compute muscle tuning curves. Also note that
for the purpose of illustration, the same EMG signals are used for offline averaging and online force reconstruction, whereas in the experiments, EMG for those
2 processes come from different acquisition blocks (i.e., in force-driven and EMG-driven conditions, respectively).
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Real-time visual feedback of either the real wrist forces or the
reconstructed wrist forces was presented on the visual display. Targets
were presented at 16 radial positions around the center of the display
(i.e., 22.5° apart). In the neutral position, flexion/extension corre-
sponded to the horizontal axis (flexion left), and radial/ulnar deviation
corresponded to the vertical axis (radial deviation up). In the 2 other
rotated forearm postures, the visual feedback was rotated with the
forearm such that the movement of the cursor matched the force
direction in external space.

In all experiments, a block of 32 MVC trials was 1st conducted for
each subject with the forearm in the neutral posture. This block was
used to normalize the activity of each muscle during the aiming task
to the maximal EMG obtained in that muscle during MVC toward any
target direction. Each of the 16 target directions was presented twice
in a randomized order. For each direction, subjects were asked to raise
their force rapidly to the maximal extent while maintaining the force
direction within a delineated range of �8° of target direction. Max-
imal forces were held for �2 s. Fifteen seconds were allowed for rest
before the next target appeared in another direction.

Each experiment contained “force-driven” block(s) in which the
visual cursor used to reach targets represented the real force and
“EMG-driven” blocks in which the cursor represented the recon-
structed force. Each force-driven block consisted of 96 trials (6 trials
for each of the 16 target directions) in which a low level of force (i.e.,
22.5 N, which represents �20% MVC for the subjects tested) was
required to reach targets. This level of force was identical across all
subjects and chosen to reduce the possibility of fatigue. Each trial
began only if the cursor was maintained �5% of the target distance
from the origin continuously for 200 ms. The origin was calibrated to
0 force along both axes (wrist relaxed) before each block. A random
foreperiod (1–2 s) elapsed before a single target appeared coincident
with a brief tone. Participants were asked to move the cursor to the
target with a movement time of between 150 and 250 ms, defined
as the time between 10 and 90% of the radial distance to the target,
and to hold the cursor continuously for 1 s within the target zone (a
trapezoid �8° from target direction by 10% of radial distance to
target). A high-pitched tone signaled that the target had been acquired.
If the target was not acquired within 2 s of target presentation, a
low-pitched tone indicated the end of the trial. A 2nd tone (200 ms
after the 1st) indicated whether the movement time was correct (high
tone) or not (low tone), and a bar graph provided visual feedback of
the movement time in relation to the prescribed time window. Both
the target and cursor disappeared at target acquisition or trial end, and
�1 s elapsed before the start of the next trial. For each block, 6
consecutive trials were conducted for each 1 of 16 randomly ordered
targets. EMG-driven blocks were identical to force-driven blocks with
the only exception that the real force feedback was replaced by the
reconstructed force.

In experiments 1 and 2, each participant performed one force-
driven block immediately followed by an EMG-driven block. In
experiment 3, participants performed the same 2 blocks but both in the
pronated posture and in the supinated posture (4 blocks total).

EMG procedures. Bipolar EMG signals were recorded from exten-
sor carpi radialis longus (ECRl), extensor carpi radialis brevis
(ECRb), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), and
extensor carpi ulnaris (ECU) muscles either with self-adhesive surface
electrodes (experiment 1, 12-mm diameter recording surface, 2-cm
interelectrode distance) or with fine-wire intramuscular electrodes
(experiments 2 and 3, 75-�m diameter, 2 mm stripped from insulation
for recording sites, single wires inserted at 1.5-cm interelectrode
distance, dipole axes approximately parallel to the long axis of
muscles). Signals were band-pass filtered from 30 Hz to 1 kHz,
amplified 200–5,000 times (P511; Grass Instrument, Astro-Med,
West Warwick, RI), and sampled at 2 kHz. Electrode locations were
determined according to procedures previously reported (Selvanay-
agam et al. 2011).

Data reduction and analysis. Muscle tuning curves, or the time-
independent muscular activity as a function of target direction, were
determined for each muscle as the mean rectified EMG during the
hold phase of the task (i.e., in a time window from 300 to 1,000 ms
after movement onset) averaged over 5 trials to each target (the 1st of
the 6 consecutive trials to each target was discarded to prevent the
uncertainty about target direction from contaminating the data).

The spatiotemporal match between the real and reconstructed
forces, or the goodness of force reconstruction, was quantified by
defining a multivariate r2 similar to that used in d’Avella et al.
(2006):

r2 � 1 �
SSE

SST
� 1 �

� j�M �t�N �F(t) � F(t)̂�2

� j�M �t�N �F(t) � F��2

where SSE is the sum of the squared residuals, SST is the sum of the
squared residual from the mean force vector (F

�
), M is the set of trials

in a block, and N is the set of time samples per trials. Note that with
this calculation, negative values of r2 might occur with particularly
poor force reconstruction (i.e., if SSE � SST).

To test specific hypothesis, the goodness of force reconstruction
was computed in four instances after using alternate methods of force
reconstruction. In experiment 1, force was additionally reconstructed
using a set of virtual pulling vectors computed while completely
ignoring either one or two muscles. When ignoring one muscle, each
of the five muscles was selectively ignored (i.e., only our pulling
vectors determined that best reach the targets), and the goodness of
force reconstruction was averaged over the five combinations of one
muscle ignored. When ignoring two muscles, all possible pairs of two
muscles were considered, and the goodness of force reconstruction
was averaged over all combinations. In experiment 1, force was also
reconstructed using a set of virtual pulling vectors constrained by
morphometric data from cadaver (Loren et al. 1996). Specifically, the
directions and relative magnitudes of the pulling vectors were fixed
according to data from Loren et al. (1996), and the overall magnitude
only was optimized to reach best the targets when combined with
muscle activities recorded for each subject. This was designed to
compare our method with force reconstructed using a realistic biome-
chanical model of the wrist. In experiment 4, force was additionally
reconstructed using the set of virtual pulling vectors extracted from
muscle tuning curves obtained in the other forearm posture. This was
designed to ascertain that our reconstruction method is sensitive to
biomechanical changes elicited by the different postures. Differences
between goodness of force reconstruction obtained for different ex-
periments were tested using independent-samples t-tests, and differ-
ences between goodness of force reconstruction from different recon-
struction methods within the same experiment were tested using
paired-samples t-tests.

In experiments 1 and 2, the time-independent pattern of muscle
activities (i.e., muscle activity averaged per target direction) were
analyzed using 3-way repeated-measures ANOVAs [2 feedback con-
ditions (force-driven vs. EMG-driven) � 5 muscles � 16 directions of
force targets]. In experiment 3, a 4-way repeated-measures ANOVA
was conducted using posture (pronation vs. supination) as an addi-
tional factor. The significance level was set to � � 0.05.

RESULTS

Surface EMG: Experiment 1

The force reconstructed with our virtual biomechanics on the
EMG-driven blocks of this experiment explained 92.0% of the
variance of the real force signals (i.e., r2 � 0.920 � 0.035,
mean � SD). Figure 3 illustrates that this proportion of
explained variance deteriorates when the technique is applied
with one missing muscle (t � 15.34, P � 0.0005; r2 � 0.671 �
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0.058) and with two missing muscles (t � 20.76, P � 0.0005;
r2 � 0.226 � 0.098). This is likely due to the fact that there is
relatively low mechanical redundancy at the wrist joint and,
consequently, that a representation of the biomechanics of all
muscles is necessary to produce reasonable force reconstruc-
tion.

Figure 3 also illustrates that this proportion of explained
variance is in marked contrast (t � 12.34, P � 0.0005) with
that obtained when force is reconstructed with an EMG-driven
biomechanical model that conforms to measurement from
cadaver (i.e., r2 � 0.082 � 0.165). Figure 4 further illustrates
how the goodness of the force reconstruction was dramatically
affected when the muscle virtual pulling vectors were con-
strained. When the pulling vectors were unconstrained, the set
of vectors (Fig. 4B) that best reached the target produced
accurate reaches (Fig. 4C) when combined with the muscle
tuning curves (Fig. 4A). When combined online with EMG in
an EMG-driven block, this set of vectors also enables a close
match between real force (Fig. 4F) and reconstructed force
(Fig. 4G). However, when the set of pulling vectors were
constrained in direction and relative magnitude by biomechani-
cal data from cadavers (Fig. 4C), the reconstructed reach was
poor (Fig. 4E), which also translated in poor reconstructed
force (Fig. 4H).

Figure 5A illustrates for a representative subject that muscle
tuning curves obtained in EMG-driven condition, where the
feedback represented the reconstructed force, are very similar
to those obtained in force-driven condition (i.e., real force
feedback). The repeated-measures ANOVA on averaged EMG
during the hold phase of the task revealed a strong interaction
between muscles and direction of force targets [F(60, 300) �
47.96, P � 0.0005] but no feedback conditions � muscles �
directions interaction [F(60, 300) � 1.16, P � 0.21]. This
indicated that muscle tuning curves could not be distinguished
between force-driven and EMG-driven conditions when the
technique was applied with surface EMG.

Fine-Wire EMG: Experiment 2

When the technique was applied with fine-wire recordings,
the EMG-based force reconstruction explained 90.5% of the
variance of the real force signals (i.e., r2 � 0.905 � 0.026).
This proportion of explained variance is similar (t � 0.85, P �
0.439) to that obtained with surface electrodes in experiment 1.
Figure 5B also illustrates that as for surface recordings, the
technique applied with fine-wire recording produces muscle
tuning curves that match well between force-driven and EMG-
driven conditions. As for experiment 1, the repeated-measures
ANOVA revealed strong muscles � directions interaction
[F(60, 300) � 40.87, P � 0.0005] but no feedback conditions �
muscles � directions interaction [F(60, 300) � 1.28, P �
0.09], indicating strong muscular tuning that is similar for
force-driven and EMG-driven conditions.

Sensitivity to Biomechanical Changes with Forearm Posture:
Experiment 3

When we tested the sensitivity of the technique to changes in
biomechanics elicited by changes in posture, we found that the
EMG-based force reconstruction applied to the two different
forearm postures tested explained 89.5% of the variance of the
real force signals (i.e., r2 � 0.895 � 0.052). This proportion of
explained variance is very different (t � 6.78, P � 0.0005)
from that obtained when force is reconstructed for a given
posture (e.g., pronation) with the set of pulling vectors ex-
tracted from the other posture (e.g., supination; r2 � 0.099 �
0.529). Figure 6 illustrates for a representative subject that
muscle tuning curves were markedly different for the task per-
formed in supination and in pronation but very similar between
force-driven and EMG-driven conditions. The repeated-mea-
sures ANOVA revealed strong muscles � directions interac-
tion [F(60, 300) � 43.79, P � 0.0005], a strong postures �
muscles � directions interaction [F(60, 300) � 11.93, P �
0.0005], but no feedback conditions � postures � muscles �
directions interaction [F(60, 300) � 1.23, P � 0.13]. This
indicates that muscle tuning curves were strongly tuned to the
directions of force targets, that this tuning was different for the
two different postures, but could not be distinguished between
force-driven and EMG-driven conditions.

DISCUSSION

Our goal was to develop a technique that enables accurate
online force reconstruction from imperfect EMG recordings.
Instead of seeking an accurate biomechanical model, we em-
ployed an alternative, practical approach whereby a virtual
representation of muscle biomechanics is defined that best
reconstructs force when combined with available EMG record-
ings. The virtual biomechanics method was applied during
two-dimensional isometric force at the wrist in a controlled
musculoskeletal configuration that restricted changes in muscle
length and moment arm. We demonstrated that the technique
works for various experimental contexts in which we varied the
recordings methods as well as the muscle biomechanics. This
method assumes a linear relationship between muscle activa-
tion and rectified EMG, which is likely to be true for the
relatively small range of isometric forces produced by our
subjects in this task.

Fig. 3. Goodness of force reconstruction (r2) for the 3 different experiments
(Exp) and for the 4 alternate force reconstruction methods: with the pulling
vectors computed while ignoring either 1 or 2 muscles for experiment 1, with
the pulling vectors constrained by a realistic biomechanical model for exper-
iment 1, and using the set of pulling vectors extracted from the other posture
for experiment 3 (cf. main text). Error bars represent standard deviations, and
significant differences are indicated by asterisks (P � 0.05).
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Robustness to Limitations from EMG Recordings

Two major issues associated with EMG recordings are cross
talk and representativeness (Hug 2011; Staudenmann et al.
2010). Cross talk refers to a contamination of EMG signals by
electrical activity of nearby muscles, and representativeness
refers to the proportion of active motor units captured by the
signal. Because electrodes are directly inserted into the target
muscle, fine-wire recordings are less subject to cross talk than
surface recordings that are more remote and less precisely
positioned relative to muscles (Selvanayagam et al. 2012).
Fine-wire recordings, however, are more selective to the part of
the muscle into which the electrodes are inserted and therefore
less representative of the overall activity of the target muscle.
By showing that our technique works equally well with both
types of recordings, we demonstrated that it is robust to both

of their associated limitations. It is worth noting that both
cross talk and selective sampling of muscle fibers in the
vicinity of the electrodes would affect force reconstructions
using forward simulations of an accurate biomechanical model.
Although these limitations could be substantially reduced using
high-density EMG (Staudenmann et al. 2010), our reconstruc-
tion method obviates the need for this technology, which would be
expensive and demanding to incorporate the multiple muscles
needed for force reconstruction in various directions as achieved
here.

Sensitivity to Biomechanical Changes with Posture

As muscle length and moment arms change with musculo-
skeletal configuration, so changes the torque generation of
muscles and therefore the muscle activation patterns capable of

Fig. 4. Illustration of the deterioration of force reconstruction when the pulling vectors were constrained in direction and magnitude by biomechanical data.
A: muscle tuning curve. B: pulling vectors freely determined. C: constrained pulling vectors. D and E: reconstructed reaches with unconstrained (E) and
constrained (F) vectors. F: real force. G and H: reconstructed forces with unconstrained (G) and constrained (H) vectors. Data from this figure come from an
EMG-driven block of the subject who obtained the highest goodness of force reconstruction (r2 � 0.28) with the constrained vectors.
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generating a given joint torque in a given posture. How the
nervous system adjusts motor commands to the biomechanics
of the current posture is a key problem of motor control, which
has been explored by simultaneously assessing changes in
muscle biomechanics, in muscle activities, and in neural ac-
tivities at various levels of the CNS (Buneo et al. 1997; Kakei
et al. 1999, 2001; Sergio and Kalaska 1997, 2003; Yanai et al.
2008). For instance, nonhuman primate studies reported sys-
tematic changes in muscle activity selected to produce force at
the wrist in different forearm orientation (Kakei et al. 1999,
2001). In a recent study in which we assessed these changes in
humans, we showed in particular that FCR displayed higher
activity and broader tuning during force produced with the
forearm in a pronated position compared with a supinated
position (de Rugy et al. 2012a). A similar pattern is visible in
our data displayed Fig. 5 that has also been replicated in our
condition in which the task was controlled with force recon-
structed from EMG instead of real force. We therefore dem-
onstrated that our force reconstruction technique fully captures
biomechanical changes associated with the different forearm
postures. This is important because it means that we can use
this technique to address the question of how the nervous
system tunes motor commands to the biomechanics of the
current posture. In fact, we have recently addressed this ques-
tion by simulating the biomechanics of a different posture to
show that participants initially compensate for this perturbation
using a linear scaling of their original pattern of muscle activity
(i.e., the pattern that corresponds to the real posture; de Rugy
et al. 2012b).

Potential Contributions from Hand and Finger Muscles

The current force reconstruction technique has ignored po-
tential contributions from the numerous (i.e., 19) hand and

finger muscles that cross the wrist and that have nonnegligible
moment arms in wrist flexion/extension and radial/ulnar devi-
ation (e.g., see Fig. 3 in Gonzalez et al. 1997 for a visual
representation of these moment arms at the wrist). We believe
that the contribution from these muscles to the task was not
high at the relatively low level of force involved here (i.e.,
�20% MVC). This is because in our device the hand was fitted
at the metacarpal-phalangeal joints such that the fingers were
hanging in the air with no mechanical contact to the device and
subjects were instructed to prevent any forcing or gripping that
could bring the fingers in contact with the device. In this
context, transmission of force from finger and hand muscles to
the device is still possible through cocontraction that would
maintain steady finger positions. Cocontractions between op-
posing finger extensors and flexors would be typically paral-
leled by opposing wrist extension and flexion moments,
thereby reducing the net contribution at the wrist joint. How-
ever, the pulling vector discrepancies with respect to the
anatomically constrained model appear to involve mostly un-
derrepresented radial torques (see Fig. 4), which are particu-
larly large for thumb extensors and flexors (Gonzalez et al.
1997). To rule out such a contribution, it would be necessary to
obtain selective EMGs from at least a representative sampling
of the thumb and finger muscles uncontaminated by cross talk
from the nearby and simultaneously active wrist muscles. To
incorporate such contributions into the model, it would be
necessary to obtain quantitative EMGs from all 19 of these
muscles during both their maximal activation and a sufficiently
rich set of tasks for which their activity would be differenti-
ated. Thus it is important to recognize that the virtual biome-

Fig. 6. Example of muscle tuning curves obtained in force-driven condition
and in EMG-driven condition for 2 postures (i.e., �80° supination and �80°
pronation) of 1 subject in experiment 3. The arrows indicate the wrist direction
used for reference (i.e., radial deviation). EMG activities are normalized to
maximal EMG, and a scale bar indicates 0.1 n.u.

Fig. 5. Example of muscle tuning curves obtained in force-driven condition
and in EMG-driven condition for the same subject in experiment 1 (A; surface
EMG) and in experiment 2 (B; fine-wire EMG). EMG activities are normalized
to maximal EMG, and a scale bar indicates 0.1 normalized units (n.u.).
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chanical model is not intended to generate an accurate repre-
sentation of the work of specific anatomical muscles. It is
intended to provide a useful experimental tool to understand
sensorimotor adaptation and learning when studied within the
context of a well-defined task and subject-specific parameter-
ization of the model. The robust quality of the force recon-
structions presented here suggests that this goal has been met.

Differences with Existing EMG-Based Force Reconstruction

Our method is related to a previous method whereby coef-
ficients that relate EMG to force are determined for individual
muscles from a data set that requires production of force in
various directions and knowledge of muscle moment arms (An
et al. 1983; Buchanan et al. 1993; Messier et al. 1971). This
approach, termed “coefficient methods” (Buchanan et al.
1993), would be similar to the method described here had we
optimized only the magnitude of the muscle pulling vectors,
i.e., by constraining the vector directions according to biome-
chanical data. A drawback of this method is that it implies
knowledge of muscle moment arms, which requires magnetic
resonance imaging to be accurately assessed on an individual
basis (Buchanan et al. 1993). Kutch et al. (2010) recently
proposed an alternative method based on surface EMG to
extract the direction of action of finger muscles. However, this
method might require EMG that represents accurately the
activity of the overall muscle, as can be the case with finger
muscles, since we were not able to generate reliable direction
of action using this method for wrist muscles. In the end,
muscle direction of action was unnecessary as our method is
free of a priori biomechanical knowledge. We believe that this
enabled additional flexibility that was beneficial to the high
correlation obtained between forces reconstructed online and
real forces.

Another related method was recently proposed whereby a
matrix factorization algorithm is applied to surface EMG to
extract control signals for prostheses (Jiang et al. 2009; see also
Kamavuako et al. 2012). Using forces at the wrist as control
signals and a generative model of surface EMG that assumes
hard-wired muscle synergies, Jiang et al. (2009) obtained a
goodness of force reconstruction that was comparable with that
of the present experiments in the absence of simulated muscle
cross talk (90.2% variance of the force signals explained) and
that degraded with the level of cross talk. In an experiment
using eight pairs of recording electrodes arbitrarily placed
(equally spaced) around the forearm, they obtained a variance
of force signals explained that dropped to 77.5%. The method
presented here uses EMG signals that can be identified with
specific muscles but compensates for their inevitable shortcom-
ings of selectivity and sampling. This resulted in low residual
errors for predicted force as well as the ability to simulate specific
changes in musculoskeletal function in virtual force experiments.
Neither the matrix factorization algorithm nor the probabilistic
method of Seifert and Fuglevand (2002) would be suitable for this
application.

Adaptation to Novel Virtual Biomechanics

Over the last few decades, the literature on sensorimotor
adaptation has been dominated by two main classes of pertur-
bations: force-field, whereby a force is applied to an end-
effector, and sensorimotor shifts, such as in prism adaptation or

visuomotor rotation (de Rugy et al. 2009; Gandolfo et al. 1996;
Ghilardi et al. 1995; Shadmehr and Mussa-Ivaldi 1994; Shad-
mehr and Wise 2005; Simani et al. 2007; Welch et al. 1974).
The present technique offers opportunities to study adaptation
to a new class of perturbation, whereby the virtual biomechan-
ics that link muscle activity to reconstructed force can be
modified at will. In particular, this technique enables selective
manipulation of properties of individual muscles that is not
possible within the broad alteration of sensorimotor mapping
induced by force fields or sensorimotor shifts. We have already
used the technique to simulate the muscle-specific biomechan-
ics of a different posture as well as the complete loss of a
muscle and large amounts of signal-dependent noise added to
a muscle (de Rugy et al. 2012b). In all of these conditions, we
found that participants compensated for the perturbation using
a linear scaling of their original pattern of muscle activity. This
has important implications because, although the pattern of
muscle activity used to produce force at the wrist is reasonably
well-reproduced by optimization models (Diedrichsen et al.
2010; Fagg et al. 2002; Haruno and Wolpert 2005), how the
nervous system achieves this behavior remains largely unre-
solved. For instance, our previous results appear inconsistent
with online optimization of muscle activities, as this should
have elicited a reoptimization that was not observed when
faced to conditions of novel biomechanics. Instead, the ob-
served scaling of the original pattern suggests an important role
of the lower sensorimotor circuitry, which might not be readily
available to adaptation. Although these results hold only for the
brief time scale tested so far, the method presented here could
in principle be used to assess adaptation over much longer time
scales.

The force reconstruction method allows modifications of the
virtual biomechanics that are limited only by imagination. For
instance, one might take advantage of the facts that wrist
muscles switch their functional relationship depending on the
direction of action and that the spinal cord circuitry is known
to be intimately related to this adjustable functional relation-
ship (Pierrot-Deseilligny and Burke 2005; Raphael et al. 2010).
During wrist extension, the extensor muscles function as ago-
nists, and the flexor muscles function as antagonists, but during
radial/ulnar deviation, the extensor muscles (as well as the
flexor muscles) oppose each other. Adjacent muscles could
therefore be considered as “partial synergists” because they
switch from agonist to antagonist based on the direction of
action, and diagonal muscles that are farthest apart from each
other as “true antagonists” because they always oppose each
other (for example, FCR and ECU). The implication of this
functional organization on sensorimotor adaptation could be
tested using the virtual biomechanics to simulate different
arrangements of muscles that would vary the degree of integ-
rity of their functional relationships. Importantly, the current
technique has the potential to start from the most intuitive
relationship between muscle activity and force (i.e., the natural
relationship) before introducing modifications. Myoelectric
controllers for prosthetic limbs typically aim for intuitive
mappings to reduce learning requirements (Hargrove et al.
2009; Parker et al. 2006; Zhou et al. 2007). However, Rad-
hakrishnan et al. (2008) reported that learning a novel nonin-
tuitive arrangement was more feasible when it involved mus-
cles that were less functionally related. The technique pre-
sented here offers new opportunities to explore these issues.
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