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Abstract

We have constructed a highly structured note-taking system that is readily min-
able because it consists of objective data rather than free text and is free of identifi-
able, protected health information. Our objective observations automatically enter a 
backend database collected from patients who have attended our clinic for orofacial 
pain and oral medicine. We next added two Naive Bayesian algorithms into our 
encounter process to generate real-time diagnostic suggestions for each patient. The 
first is a standard Naive Bayesian Inference algorithm that provides the clinician with a 
dynamic, real-time list of possible diagnoses that the collected data support. The sec-
ond is a Naive Bayesian Exploration algorithm that provides the clinician with a second 
list of the critical data that should be collected next to confirm or refute the suggested 
diagnoses. We are now comparing the algorithm-assisted note-taking system to notes 
created without the Bayesian algorithms. Our planned outcomes are reduced click 
burden and concordance between the clinician’s diagnosis and those predicted by 
the algorithms. This project aims to examine if an algorithm-based clinical decision-
support system improves the efficiency and accuracy of the diagnostic process.

Keywords: Bayesian inference algorithm, electronic medical record, diagnostic assist 
software, point of care, structured data, orofacial pain, Oral medicine

1. Introduction

To be useful to a busy clinician, any assistant (machine or human) must be present 
as decisions are being made, must have access to information that is current, clear 
and correct, and must provide suggestions (not commands) that are continuously 
relevant to the unfolding clinical encounter. Unfortunately, so-called diagnostic-assist 
software to date has been constructed and tested as stand-alone applications into 
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which someone (probably not the busy clinician) curates clinical observations from 
a completed health record after the fact and then compares the diagnoses suggested 
by the software to those entered by the clinician [1–5]. We describe here our journey 
toward a clinically useful point-of-care system in 8 steps (Figure 1).

1.1 Step 1. Start with a highly structured data collection system

To create a real-time diagnostic assist tool, you first need accurate clinical data; 
otherwise, you are dealing with GIGO (garbage in → garbage out). Diagnostic-assist 
software can be trained on electronic health records (EHRs) of large numbers of 
patients only if those records are reasonably complete, objective and accurate. A 
point-of-care diagnostic-assist system can follow a clinical encounter only if the 
patient’s data are immediately accessible as well as objective and accurate. For this 
reason, the first step on our journey to assist clinicians in achieving more accurate and 
efficient diagnoses was to shift our patient encounters from a narrative-style note to 
a highly structured, check-box-based note. We initially developed this note-taking 
system – called Smart Note – for the orofacial pain and oral medicine fields in which 
most diagnoses depend on the details of the clinical history and physical examina-
tion rather than specific radiological, histologic, or serological laboratory tests. This 
note-taking system was designed with multiple pages where a clinician mostly checks 
YES or NO boxes. It soon became obvious that our system needed some short nar-
rative note fields, making it a hybrid check-box-based note-taking system. This was 
necessary because no set of checkboxes could anticipate all details of a patient’s story. 
The clinician user was instructed to keep these narrative notes brief. Currently, the 
narrative sections of our notes are not used in any algorithmic analysis but are used to 
fully capture details for the final note placed in the medical record.

Diagnosis of patients in oral medicine is often different from orofacial pain, which 
is based largely on the medical interview and clinical examination findings. For many 
oral pathologic entities, a tissue biopsy can be used as a definitive disease biomarker. 

Figure 1. 
Diagram of the 8-step journey to create a highly structured note-taking system using machine learning and 
artificial intelligence (ML-AI).
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Still, a biopsy involves expense and delay and will be obtained for only about a third of 
the oral tissue, infectious and osseous diseases encountered. Another major problem 
is that many oral tissue and radiologic diseases often do not have patient-based symp-
toms (e.g., a lucent lesion on a radiograph or a discolored tissue patch in the mouth) 
and are instead first discovered by a serendipitous clinical examination. In oral medi-
cine, the clinical examination of the lesion’s features rather than the chief complaint 
or the history of present illness provides key observations that support a diagnosis in 
non-biopsy cases. For these reasons and our desire to create a valid diagnostic assist 
algorithmic-driven tool that could be used at the point of care, we decided to create 
a highly structured note that captured history and examination data. The medical 
history is often called “subjective” data in the clinical note-taking system with the 
acronym SOAP (subjective, objective, assessment plan), but it must be reduced to 
computer-readable (i.e. objective) values. This means that our medical encounter note 
was populated with predominately Boolean data (YES/NO) and a sparse amount of 
continuous data as needed. When a definitive diagnostic test is available, the diagnosis 
at the first encounter is considered a working diagnosis. It is only converted to a final 
diagnosis and entered into our backend database once confirmed.

The decision to use a check box approach was partly driven by a 2019 systematic 
review article that examined a set of studies that used natural language processing 
(NLP) on electronic medical record (EMR) based narrative notes [6]. The study 
included 106 papers that extracted variable data from narrative notes and then 
submitted these variables to machine learning (ML) analysis. The ML analyses aimed 
to find the highly important variables that predicted the outcome of these diseases. 
To do this, the review first reduced the 43 chronic diseases cataloged in the various 
articles to a smaller list of 10 disease categories using the International Classification 
of Diseases, 10th Revision (ICD-10). The authors noted that better results were found 
only when the clinical records were highly structured. The authors reported that 
using NLP to examine narrative notes resulted in only a few instances where predic-
tive algorithms worked well, and they suggested that better-structured notes are 
needed to make text mining with NLP useful.

1.2 Step 2. Branching nodes to reduce click burden

The second step on this journey was to decide where to place our branching nodes. 
The reason branching nodes are essential with a check-box-based note-taking system 
is the very real problem of “click burden”. A comprehensive list of all the possible 
checkboxes needed to capture the medical story and the features that could be 
checked off during a comprehensive examination is formidable. Each specialty clinic 
will differ, but in the specialties of Orofacial Pain and Oral Medicine specialty, the 
number of variables in our Smart Note is now upward of 1500. Because no clinician 
will check YES/NO for this many variables, logical branching node points were neces-
sary. For example, a branching node would allow the clinician to select the subset of 
variables appropriate as a follow-up of the patient’s chief complaint or to document 
a specific examination feature (e.g., the color, margins, or texture of an oral tissue 
lesion). When the branching path is selected correctly, it also avoids asking questions 
that are not logical. Elective branching, if done right, prevents the clinician from 
following a time-consuming, linear lock-step march down the medical records path, 
collecting hundreds of pieces of information, many of which are of low value. When 
done incorrectly, this raises the possibility that the clinician will choose the wrong 
path and not collect crucial disease-defining information. Branching in our system 
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was initially at the clinician’s discretion, but it is sometimes automated via decision 
trees in other systems. Automated branching trees require substantial time and 
expertise to develop, are subject to professional disagreements and changing clinical 
standards, and may need to be overridden based on unusual presentations and/or the 
subjective judgment of the clinician. To improve the branching process in our Smart 
Note, as described below, we employed a new algorithm to compute the most promis-
ing next observations and present them incrementally as branchpoint suggestions to 
the clinician during the clinical encounter.

1.3 Step 3. The limitations of machine learning

The third step on our journey was to select a machine learning classification 
analysis that was logical for our task, which involved small data sets and multi-
dimensional classifications. This decision was not easy, and it started with a 2019 
article that described our initial attempts to achieve a highly structured, branching, 
patient encounter note-taking system in a specialty dental clinic [7]. In this article, 
we examined a variety of ML methods alone and in combination to try to predict our 
diagnoses. We followed this with another 2021 article describing multiple machine 
learning analyses, but now on a slightly larger dataset of patient encounters col-
lected with our note-taking system [8]. Finally, with a third article in 2021, we again 
described our initial efforts to create a highly structured note-taking system. We 
introduced the concept of using machine learning to create predictive algorithms, and 
our goal was eventually to add these algorithms into the note-taking system [9]. The 
largest difference between our first two articles and this third article is that now our 
dataset contained more variables as we included oral mucosal and osseous diseases 
in our analysis. All three of these articles employed machine learning classification 
modeling. Machine learning modeling worked well but only for those orofacial pain-
related diagnoses where we had enough cases (n ≥ 100 cases) in the database to train 
the ML model. This is problematic because our specialty clinic regularly encounters 
over 341 different diagnoses, some of which occur in our clinic with a prevalence of 
1/1000 or even less. The rule of thumb for ML modeling is that you need approxi-
mately 100 to 1000 case examples of a diagnosis to adequately train the model [10]. 
Even though we increased the database size, only five diagnoses met this requirement 
for a predictive machine learning-based algorithm. To gather enough cases to perform 
a robust ML analysis on these rare cases, we calculated that we would need close to 
100,000 patient encounters. For all the above reasons, we gave up on more traditional 
machine learning methods and elected instead to use supervised Naïve Bayesian 
Inference modeling (described below). We are now using this algorithm at the point 
of care based on over 1500 cases in our database collected with Smart Note.

Of course, machine learning modeling is a powerful tool if you have a very large 
dataset of accurate data. You can then use it to find the variables of importance and 
then build an algorithm with these variables. Unfortunately, machine learning is not 
usually dynamic because its computational burden for training is very large. Machine 
learning models also only sometimes provide predictions at the point of care, and 
while it can be updated regularly, it is not generally auto-adapting as new EHRs are 
added. One example of the value of machine learning analysis of EMR data is a 2022 
study [11]. These authors focused their research of what drug produces the best 
outcome in the management of diabetes mellitus. The authors started with 971,401 
drug usage records, and within these records, they discovered 51,009 patients with 
DM. The analysis included variables such as demographics, visits, and all medication 
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features and tests results. They used a random forest regression modeling to identify 
features and to see which medication produced the best outcome for these diabetes 
mellitus patients. After data cleaning, the data included 8729 male and 9115 female 
cases. They discovered that Metformin medication resulted in the lowest HbA1c score. 
Less effective drugs were glimepiride, acarbose, pioglitazone, gliclazide, gliben-
clamide, repaglinide, nateglinide, sitagliptin, and vildagliptin use. They suggested 
that this analysis and subsequent ranking of medications would help physicians’ 
decision-making. Unfortunately, the Chien et al., 2022 study is relatively rare as it 
did have a large dataset of medications prescribed and recognized disease-defining 
laboratory tests (i.e., HbA1c) that measures the efficacy of the medication.

This combination of large dataset and a simple question is rare. Another 2022 
article opined on when an algorithm-supported, clinical decision-making system 
would be readily available in pediatrics [12]. These authors suggested that a narrow 
AI or algorithm based CDS system certainly has the potential to help in the diagnosis 
and treatment planning of pediatric patients, but to achieve this goal, a very large 
dataset will be needed before machine learning analysis can be conducted. The 
authors summarized by saying that, at present, a ML-based clinical decision support 
tool in pediatrics is largely unrealized to date. For all the above reasons, and some we 
describe in the next paragraph, we elected to use Naïve Bayesian Inference analysis in 
our highly structured note-taking system.

2. Back to the issue of GIGO

First, we must consider the completeness of critical data because no algorithm 
can generate an accurate prediction if the disease-defining critical data elements 
for a diagnosis are missing. Faced with time constraints, some clinicians may jump 
to a diagnosis based on only a few clinical observations. This rush to judgment is a 
major reason for misdiagnoses [13]. Critical data may be missing even if the critical 
observations were obtained because the data entry system is awkward to use. The 
issue of missing critical data was examined in a 2017 article on the influence of EMR 
software design on the diagnosis of dry eye syndrome [14]. The authors selected 30 
“critical variables” based on the American Academy of Ophthalmology’s authoritative 
report on dry eyes. They then analyzed charts of 331 patients examined by residents 
with varying experience (Year 1, Year 2, Year 3) in the ophthalmology clinic for dry 
eye syndrome, looking for these 30 variables. They discovered that, on average, these 
records only contained 67.4 to 73.6% of what they considered critical data. After 
careful analysis, the authors concluded it was not the experience of the clinician but 
the design of the electronic health record template that influenced the documentation 
rate of critical data. Moreover, they blamed “click fatigue” as the main culprit causing 
the missing data.

Natural Language Processing (NLP) software promises to extract objective data 
from free-text narrative notes. One recent test of this approach collected millions of 
deidentified patient encounter records containing billions of words and phrases in 
the corpus [15]. The authors examined the accuracy of an artificially intelligent, large 
language model (GatorTron-Large, similar to ChatGPT) and compared it to other 
biomedical text-mining systems. They demonstrated that the large language model 
increased the accuracy of the extracted features (between 7–9%), compared to other 
text mining NLP models. This type of work represents a potential improvement in 
NLP analysis, but extracting critical features is only the first step. The second step 
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involves creating a list of critical data features associated with a desired outcome 
and creating a validated predictive algorithm. To truly be useful, the algorithm must 
then be tested at the point of point-of-care because analysis done on a large corpus 
of retrospective data demonstrates only the feasibility of a method. It does not prove 
its validity as a clinical decision support system used to suggest a diagnoses or best 
treatment approaches during clinical encounters. This is still a huge challenge and will 
always be problematic if there are missing, ambiguous, or inaccurate data in the target 
patient’s narrative note. Google’s head scientist Peter Norvig has commented on this, 
stating that “More data beats clever algorithms, but better data beats more data” [16].

3. Predictions are easier if you have only one end-point

A unidimensional analysis, such as finding what medication best lowers HbA1c, 
is much easier than asking an algorithm to distinguish among hundreds of medical 
disorders. The latter is called multi-dimensional analysis. The problem is that with 
more dimensions, the required size of the database grows exponentially. If anyone 
tried to create a comprehensive algorithm that could distinguish every diagnosis in 
the current International Classification of Disease (ICD-10), this would involve about 
12,000 diagnoses, and there are well over 5000 history, physical, and test items that 
might be collected [17]. This produces a matrix with 60 million cells or dimensions. 
As the number of dimensions increases, the amount of training data required for 
deep-learning neural networks to make accurate predictions increases exponentially. 
This problem is called the curse of dimensionality [18]. As we stated earlier, our 
answer to this dilemma was to implement a point-of-care Naive Bayesian Inference 
algorithm on incremental collection of discrete, objective observations rather than 
using machine learning classification analysis based on all keywords extracted by 
NLP from narrative notes. A Naive Bayesian Inference analysis of EHR data proceeds 
incrementally as each new datum is input. It is thus naturally suited to providing 
real-time diagnostic suggestions as the clinical interaction unfolds. As new EHRs 
become available, it is relatively simple to update the Bayesian probabilities, whereas 
retraining a neural network is extremely computationally intensive. This incremental 
approach appears to overcome the curse of dimensionality, enabling a solution for 
our specialty clinic that must deal with many diagnoses, each with a relatively low 
number of case examples.

3.1 Step 4. Switching to a web APP and the backend database

The fourth step in our journey involved converting our customized note-taking 
system, built initially using Microsoft Access database software, to a web APP linked 
to a SQL backend database. A web APP affords clinicians easy access to our note-
taking system without installing or maintaining a database program on their local 
computer. Moreover, the Naive Bayesian Inference diagnostic classification algorithm 
was ideal for our note-taking system, providing predictive analysis with a much 
smaller backend dataset. Some limitations remain, however. Rare diagnoses with 
few cases in the database may not be suggested when appropriate. Recently added 
observations with few instances in the database may result in inappropriate sugges-
tions. Both of these should be mitigated as new cases are added automatically to the 
database, but we still need data on how many such cases and instances are required. 
Nevertheless, we describe below that the Naive Bayesian Inference algorithm we have 
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implemented can predict the expert’s true positive working diagnosis at the point 
of care as data are collected. We are using this version of Smart Note in the OFPOM 
Center of the University of Southern California, where our backend database grows 
automatically as about 1000 new patients added per year.

3.2 Step 5. Mining expert opinions of disease to identify disease defining features

The fifth step of our journey was ensuring our note-taking system had enough 
disease-defining variables to allow our algorithm to parse efficiently one diagnosis 
from another. Currently, expert opinion-based descriptions of diseases form the core 
of the knowledge a clinician needs to diagnose. These expert opinions are found in 
textbooks and descriptive articles, but few of these literature sources describe a vali-
dated list of variables created using statistical analysis. We aimed to mine these expert 
descriptions and convert them into a set of Boolean (YES/NO) choices that could be 
discovered during a medical interview and physical examination conducted at a first 
patient visit (Table 1). We began by examining textbooks and published case series to 
find additional disease-defining signs and symptoms. Once cataloged, we then added 
these features to our check-box system when not redundant. For diseases with enough 
case examples of a diagnosis, we then examined the data to generate an actual critical 
data list for our various diagnoses. Our criteria for being a critical data feature was 
that it had to be present at the rate of at least 50% of the time or higher whenever the 
expert selected the diagnosis. As expected for Bayesian Inference, if the critical data 

Expert Opinion descriptors Derived Boolean (YES/NO) Descriptors

3 attacks of unilateral facial pain in a 

trigeminal dermatome

HPI-Nerve Disorder: severity (0–10)

Attack duration should be between 

1 second to 2 minutes

HPI-Nerve Disorder: Pattern—Intermittent

Pain attack should be of a severe 

intensity

HPI-Nerve Disorder: Frequency—several times a day

Pain character should be either electric, 

Shooting, Stabbing or Sharp

HPI-Nerve Disorder: Duration—Seconds/Minutes

At least 3 pain events should be 

triggered by innocuous stimulation

HPI-Nerve Disorder: Onset—months ago

No clinically evident neurologic deficit HPI-Nerve Disorder: Character—electric

No persistent pain between attacks HPI-Nerve Disorder: Location—Unilateral

Not better accounted for by another 

ICHD diagnosis

HPI-Nerve Disorder: Other feature questions:

Q: Does the patient have episodic brief electric-like pains in the jaw 

or face?

Q: Does the patient get brief electric-like pain and are they 

triggered by light touch or movement of the jaw or tongue?

Q: Does the patient have brief (<20 seconds) pain attacks?

Q: Does the pain attack locate predominately to the V1, V2 or V3 

dermatome area?

Table 1. 
Comparison of trigeminal neuralgia phenotype based on expert opinion [19] and derived Boolean features in 
smart note (SN).
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items that we extract for one diagnosis are common to multiple other diagnoses, then 
those data items fail to distinguish among those diagnoses. The algorithm works best 
when a few of the history or examination features are unique or “disease-defining” 
features. Because Naïve Bayesian modeling is not a black box system, we can exam-
ine the algorithm when it underperforms and add, if we can find them, additional 
features that tune and improve the algorithm. Another immediate application for a 
critical data list will be to supplement and, ideally, to validate, replace and/or refine 
the expert opinion descriptions used in our existing Orofacial Pain and Oral Medicine 
disease classification systems.

One advantage of a critical data list is that it does not have to be static. Each new 
case added to the dataset can automatically update the list of critical observations. 
Such an auto-evolving critical data list can identify which elements are missing in a 
given EHR according to the current standard of care. This can provide feedback for 
residents-in-training. For the practicing clinician using our note-taking system, we 
believe we can automatically provide a list of “missing critical data” after the clinician 
selects a diagnosis. With the new Naïve Bayesian Exploration algorithm (described 
below) we can actually provide this list before the clinician selects their final diag-
nosis. With audits and calibration training, instances of missing critical data are 
expected to decline as we tune our algorithms. No system works well without training, 
calibration, a clear list of disease-defining variables, and auditing for the presence or 
absence of these variables is needed. As our clinicians gain familiarity with the pro-
cess and we audit and provide feedback on their notes, their performance is expected 
to improve. Knowing the key questions to ask or the critical examination elements 
to perform defines an expert diagnostician and assures the quality of the continually 
growing backend database.

3.3 Step 6. Composite diagnosis groups

The sixth and highly important step in our journey was to reduce the number 
of target diagnoses by combining, where it was logical, similar diagnoses into a 
composite diagnostic category. For example, the diagnosis of temporomandibular 
joint arthritis has an ICD-10 diagnostic code (ICD-10-CM #M26.43). This code has 4 
subcategories with a separate ICD code number for right, left, bilateral and unspeci-
fied TMJ Arthritis. From the features collected on a medical interview and from data 
collected during a clinical examination, it is possible for an expert to distinguish 
between these different forms of TMJ arthritis. However, we determined that it would 
be logical and algorithmically easier to combine all TMJ arthritis as a single category 
(i.e., arthritis of unspecified temporomandibular joint location). This makes it easier 
to predict this diagnosis as we have more case examples and while it does combine the 
right, left or bilateral forms of this disease into a single diagnosis, this is not prob-
lematic as far as we can tell. This compositing process was performed for multiple 
diseases in Orofacial Pain, and it reduced the outcome from 124 individual diagnoses 
to 72 composite groups. Compositing was also done for our Oral Medicine diseases, 
and it reduced the outcomes from 217 to 77. At present, we have now reduced the 
predicted categories seen in our clinic from 341 down to 149.

3.4 Step 7. Click burden analysis and reduction

The above journey led us to create a note taking system in which clinician users 
had to learn to navigate efficiently through a very large set of possible observations. 



9

Perspective Chapter: Highly Structured Data Collection and Predictive Diagnostic Assist...
DOI: http://dx.doi.org/10.5772/intechopen.1003849

This required our users to learn both which observations might be relevant to an as-yet 
undetermined diagnosis, as well as the location of those observations in our growing 
note-taking system. The resulting click-burden and navigation dilemma seemed likely 
to increase the omission of clinically important data and increase the amount of train-
ing required by new users. We were additionally concerned that a large list of Boolean 
observations would also be problematic if our approach were to be extended to other 
areas of medicine (e.g., internal medicine or neurology) that encounter more diagno-
ses with many more history and examination features to record. Therefore, the seventh 
step on the journey was to incorporate a second Naive Bayesian style algorithm that 
suggests an efficient path through those observations that is tailored to each patient’s 
differential diagnosis. The new algorithm is unique in that it uses the predicted 
diagnoses from the Naive Bayesian Inference algorithm and suggests an ever-adapting 
set of missing data that the clinician should consider collecting. This algorithm was 
first successfully used in robotics to rapidly and accurately identify objects based 
on their haptic properties [20]. Specifically, the authors dubbed this new algorithm 
“Naive Bayesian Exploration”. They used it to decide which tactile sensory data from 
which exploratory robotic movement would provide the most useful information 
at each point in this incremental process. Because it was based on a Naive Bayesian 
process, the tactile sensory data collected were compared to previous experience with 
identified objects in a backend database. The article showed that the system had high 
discrimination accuracy and high efficiency when comparing similar objects, and it 
exceeded human capabilities at the same task. The authors suggested that their Naive 
Bayesian Exploration process could generalize well to other cognitive problems. In a 
subsequent article, one of those authors and this chapter (GEL) described how this 
algorithm could play a key role as a decision-support tool for clinical diagnosis [21].

4. Two algorithm synergy

Recent work has shown the potential of using a Naive Bayesian Inference algo-
rithm to classify and predict a single diagnostic outcome [22]. Specifically, in 2023, 
an article compared four machine learning models that attempted to achieve early 
prediction of acute respiratory distress syndrome in a set of patients with acute 
pancreatitis. This was done because acute respiratory distress syndrome (ARDS) 
is a common complication of acute pancreatitis (AP) and is associated with high 
mortality. The authors analyzed data from 460 patients with acute pancreatitis, of 
whom 83 developed ARDS. The four machine learning models they compared were 
Support Vector Machine (SVM), Ensembles of Decision Trees (EDTs), Naive Bayesian 
Classifier (BC), and nomogram models. The Naive Bayesian classification model had 
a slightly better predictive performance and gave the highest area under the curve 
score (AUC = 0.891) for predicting ARDS.

Our Smart Note application is very different because it requires likelihood predic-
tions from many potential diagnoses and this is more difficult than predicting a single 
adverse outcome. Rather than picking a few observations with high predictive value, 
our general diagnostic system requires complete and accurate data for many different 
subsets from a large set of possible observations. This is unlikely to obtain if clini-
cians face a high click burden that leads them to navigate poorly or resort to subjec-
tive free-text data entry because it is faster. If the note-taking system can suggest 
which of our structured observations are likely useful at each point in the diagnostic 
work-up, the click burden could be greatly minimized while reducing the incidence 
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of incomplete or uninterpretable health records. This led us to combine Smart Note 
with an iterative, alternating application of Naive Bayesian Inference (algorithm #1) 
and Naive Bayesian Exploration (algorithm #2), as previously suggested. At each step 
in the work-up, Naive Bayesian Inference operates on the currently available data 
to determine the current probabilities of all potential diagnoses, followed by Naive 
Bayesian Exploration to compute the utility of all possible next steps in the workup. 
The current version of Smart Note continuously provides the clinician with short lists 
of the most likely diagnoses and the most useful next observations, each of which 
can be selected with one click (  Figure 2  ). After the new data are entered, the process 
is iterated until the clinician accepts a diagnosis as final. These observations are 
incorporated into the database to improve the algorithm’s performance for future note 
entries (  Figure 3  ). We are now actively tracking click counts when the note-taking 
system is used with and without these algorithms.   

  4.1 Step 8. Efficacy of the double naive Bayesian algorithm approach 

 The last step in our journey will be to examine the efficacy of what we have devel-
oped. Specifically, we have proposed that an iterative combination of Naive Bayesian 
Inference and Naive Bayesian Exploration algorithms used within a highly structure 
note-taking system will add value and expedite the medical note-taking process. 
However, with any proposed new methodology, it is necessary to demonstrate effi-
cacy according to objective outcome measures, to determine the cost/benefit of the 

  Figure 2.  
  SmartNote page for patient 38PSURDP (test patient) shows the tentative diagnoses list (myalgia/MFP 
[myofascial pain], arthralgia, DDWR [disc displacement with reduction], TMJ [temporomandibular joint] 
osteoarthritis and sleep disordered breathing) with their respective probability, and suggested questions (in green 
are the pages the clinician has already visited) shown in descending order of importance for discriminating among 
the list of tentative diagnoses.          
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new system and to assess its potential to generalize to other applications. That requires 
a backend database containing patient examples for most, if not all, of the clinic’s 
diseases, which we are still building. It can then be tested for those diagnoses that have 
enough examples in the database to build, train and test the above algorithm.

Our plan to examine efficacy is to divide our dataset into two parts: a training 
set consisting of 85% of the available patient records and a test set consisting of 
the remaining 15% from which we simulated new clinical encounters. The primary 
outcome to be assessed is a count of how many of our expert’s diagnoses in each test 
record were found in the top six predicted diagnoses after entering data in the test 
records. This outcome was selected because the goal of our predictive model is not to 
replace the clinician but to assist the clinician, especially novices who may overlook 
some diagnoses or fail to recognize the relevance of some observations to them. 

Figure 3. 
Flow chart of the smart note (SN) process from adding new patient information to selecting the tentative and 
final diagnoses.
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A perfect alignment would be when a patient has 2 or 3 diagnoses, and they all are 
within the list of the top six predicted diagnoses generated by our algorithm. With 
each prediction failure, an analysis of why it failed is critical. The failure reasons 
are several, including: (1) Operator Error: missing critical data in encounter note; 
(2) Operator Error: did not choose a diagnosis that the actual data supported; (3) 
Inadequate Database: no disease defining variables for a diagnosis have yet been 
identified or collected; and (4) Inadequate Database: too few case examples to create a 
valid list of critical data features for a diagnosis.

One secondary outcome is click burden—the number of clicks and webpages vis-
ited to complete an encounter note. We expect that the click burden to reach a defini-
tive diagnosis will be reduced when using our Naive Bayesian-assisted note-taking 
system compared to the number of clicks used when these algorithms are unavailable. 
We are also tracking the presence or absence of critical data elements in the encounter 
note. As we have explained, critical data are those variables that have a high frequency 
(> > 50%) of “YES” occurrences for a specific diagnosis. The percentage of critical 
data obtained and recorded should be at least as high or higher than when an expert 
clinician creates a note without the embedded assist algorithms. We are tracking these 
outcomes and will report on them in the future. If these outcome measures indicate 
success in our limited clinical field, this will justify the considerable effort required 
to extend it to other clinical practices with different types of observations and many 
more potential diagnoses.

5. Full disclosure

Our algorithm-enhanced note-taking system is still undergoing design changes 
to enhance the intuitive usability of its interfaces with the clinician. We will need 
more cases in our backend database to identify and differentiate many of the less 
frequent diseases, disorders, dysfunctions and their presentations as we attempt to 
diagnose in our specialty clinic. Currently, we only have 1500 first-visit encounters 
documented. For those patients with orofacial pain-related problems, we only have 
35 out of 72 possible composite diagnoses with enough exemplar cases to build a 
critical data list. For those patients with an oral mucosal or osseous disease, we 
have only 40 out of 75 composite diagnoses with enough exemplar cases to build 
a valid list of critical data. To establish a reasonable critical data list probably 
requires at least 5 to 10 cases per diagnosis, and every case needs one or more 
disease-defining features. Moreover, you need an above 90% level for critical data 
to have an accurate algorithm. The smart note system we are working with cur-
rently has 341 possible individual diagnoses and 149 composite diagnoses. When 
we conducted our analysis, our backend dataset had 1406 new patient cases. We 
selected 15% of our backend database cases to test our algorithm on (211 cases with 
413 diagnoses). In this test set, only 41.1% (63/153) have greater than or equal to 5 
cases per diagnosis. Nevertheless, we report here that the Naive Bayesian Inference 
algorithm we use correctly predicted 293 of the 413 (70.9%) of the expert’s 
selected diagnoses. The number of test cases where 1 or more of the expert’s diag-
nostic choices was in the Naive Bayesian inference algorithm’s top 6 list occurred 
for 168 out of 199 possible times (84.4%). As we have not fully implemented the 
Naive Bayesian exploration algorithm, we do not yet have data on click-burden or 
the rate of critical data missing in the clinician’s note.



13

Perspective Chapter: Highly Structured Data Collection and Predictive Diagnostic Assist...
DOI: http://dx.doi.org/10.5772/intechopen.1003849

6. Conclusions: do algorithmic predictions add value to the clinician?

The Naive Bayesian Smart Note we are developing is intended to be a diagnostic 
assist tool rather than a generator of definitive diagnoses. Some of its predictions 
would be obvious to an experienced clinician but may still be of value for a trainee. 
Some of its predictions and recommendations are nonsensical (particularly when 
dealing with rare diagnoses and atypical presentations or diagnoses for which we 
have not yet defined and entered critical history and examination features); these 
need to be ignored. One surprising value was that visualizing the evolution of the 
differential diagnosis according to Naive Bayesian Inference gives the clinician unique 
insight into the relative importance of each data point. According to Naive Bayesian 
Exploration, this awareness, plus the recommendations for the next observations 
should improve the quality of the records that go into the database. We anticipate that 
the Naive Bayesian Smart Note will improve as we add high-quality clinical records 
and tune the set of possible observations. We predict that we will need over 10,000 
cases in our clinic’s backend dataset, probably supplemented with hand-picked cases 
of rarer diagnoses. Even without the algorithms, Smart Note generates excellent 
quality encounter notes that are highly structured with a reasonable click burden for 
clinicians who have learned to navigate efficiently through its many pages for data 
entry. Such objective clinical records are easily auditable both at a quick glance by an 
expert and by automatically reporting on missing critical data. With the addition of 
the second algorithm for Naive Bayesian Exploration, we will evaluate if this reduces 
the click burden with a much shorter learning curve. Our goal now is to provide a 
note-taking system that motivates clinicians to collect objective and high value data 
because it has the potential to improve both the efficiency and accuracy of their diag-
nostic process at the point-of-care. As high-quality data are added to the self-curating 
database, its scope and utility should improve, forming a virtuous cycle.
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