
TYPE Review
PUBLISHED 07 March 2023
DOI 10.3389/fnint.2023.1108271

OPEN ACCESS

EDITED BY

Elizabeth B Torres,
Rutgers, The State University of New Jersey,
United States

REVIEWED BY

Guenther Palm,
University of Ulm, Germany
Michael M. Halassa,
Massachusetts Institute of Technology,
United States
Jeffrey L. Krichmar,
University of California, Irvine, United States

*CORRESPONDENCE

Gerald E. Loeb
gloeb@usc.edu

RECEIVED 25 November 2022
ACCEPTED 13 February 2023
PUBLISHED 07 March 2023

CITATION

Loeb GE (2023) Remembrance of things
perceived: Adding thalamocortical function to
artificial neural networks.
Front. Integr. Neurosci. 17:1108271.
doi: 10.3389/fnint.2023.1108271

COPYRIGHT

© 2023 Loeb. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Remembrance of things
perceived: Adding
thalamocortical function to
artificial neural networks

Gerald E. Loeb*

Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles,
CA, United States

Recent research has illuminated the complexity and importance of the

thalamocortical system but it has been difficult to identify what computational

functions it performs. Meanwhile, deep-learning artificial neural networks (ANNs)

based on bio-inspired models of purely cortical circuits have achieved surprising

success solving sophisticated cognitive problems associated historically with

human intelligence. Nevertheless, the limitations and shortcomings of artificial

intelligence (AI) based on such ANNs are becoming increasingly clear. This

review considers how the addition of thalamocortical connectivity and its

putative functions related to cortical attention might address some of those

shortcomings. Such bio-inspired models are now providing both testable

theories of biological cognition and improved AI technology, much of which is

happening outside the usual academic venues.
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The general challenge

If you examine the contents of the smart phone that most people now carry, you will
generally find a few hundred or perhaps thousand snapshots that the owner chose to
memorialize. What was so special about them? During the ∼16 h a day while we are
awake, we make and process about three gaze shifts (saccades) per second, for a total of
>100,000 visual images per day. Similarly, people make about three exploratory movements
per second with their hands regarding any object or surface that they might contact. The
decisions behind and the experiences of these elective events are an essential part of our
ability to function in complex and largely unstructured human environments, yet they
are almost completely subconscious. Nevertheless, a few of these events rise to conscious
awareness and may be remembered, at least for a while in our mind’s eye and perhaps
forever on our smart phones. Marcel Proust created his seven-volume novel Remembrance
of Things Past out of the involuntary mental snapshots that provided the book’s fictional
narrator with a fragmentary representation of his life. By using “remembrance” instead of
“memory”, Proust and this review focus on the act of remembering and the decision-making
that precipitates this act, as opposed to the form or content of memory.

We now understand that biological remembering comes in many forms, only some of
which lead to vivid snapshots for conscious recall. Instead, most remembering consists of
shifts in how we perceive the world in the future. Such shifts also affect the content that
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we recall as snapshots. Thus decisions about when and how to
remember which aspects of experiences have large consequences for
how we perceive and react to future events. Such decision-making
has received relatively little recent attention in the burgeoning
field of artificial intelligence. The dominant current models are
ANNs that leave faint traces of every input that they receive,
according to rules that are designed to distill passive experience
into recurring patterns that can be given discrete labels—declarative
memory. Preprocessors to amplify aspects of sensory data that
might reflect salient features may modulate such traces, but these
processes are continuous and automatic, essentially lacking in the
decision-making aspects of human attention. Current thinking
about thalamocortical function provides a broader and more
dynamic view of salience that is starting to be incorporated in some
ANN research.

The process of attending to a stimulus is often marked by
a large, widespread and easily recorded electrical signal called
the P300 wave in the electroencephalogram (EEG). This artifact
signifies that some complex process has occurred, but it provides
little more useful information about that process than the clicking
shutter sound emitted by a digital camera when the user takes
a snapshot (Donchin, 1981). The P300 is the consequence of
a synchronization of synaptic currents at the cortical end of a
recurrent loop between cerebral cortex and thalamus (Yingling and
Hosobuchi, 1984; Hsu et al., 2018). How this is triggered and what it
accomplishes remains speculative. The absence of analogous events
and processes in machines claiming to be artificially intelligent
may underlie their increasingly manifest limitations. Some of the
enhancements to ANNs that are currently being developed were
inspired by or might adventitiously shed light on thalamocortical
function.

Much has been written about the role of the thalamocortical
system in the many oscillatory rhythms that can be recorded in the
EEG (Izhikevich and Edelman, 2008) and the role of synchronized
spike activity in perception (Singer, 2009). Most computational
models of thalamus have focused on the generation of such
temporal patterns (Suffczynski et al., 2001; Muller and Destexhe,
2012; Willis et al., 2015; Bhattacharya et al., 2021) and their
modification by clinical deep brain stimulation of the basal ganglia
(Rubin and Terman, 2004; So et al., 2012; Yu et al., 2020). This
review focuses on high-level connectivity and functionality without
considering whether such temporal patterning is an essential
mechanism or an epiphenomenon of that functionality. Much
has been written about the role of the thalamocortical system in
what philosophers call “consciousness” (Edelman and Tononi, 2000;
Crick and Koch, 2003; Melloni et al., 2007). This review focuses
on the various mechanisms and levels of attending to sensory
events without proposing whether any of these are necessary or
sufficient to account for the subjective states of consciousness
or awareness.

A general strategy

Much of what was first learned about brain function came
from “experiments of nature” in which neuroscientists studied
the disabilities of subjects with lesions of specific parts of their
nervous systems. Much of what neuroscientists now hope to learn

about brain function comes from building computational models
and examining their emergent behaviors. Perhaps we can learn
from the disabilities of these deficient “experiments of technology.”
Furthermore, normal humans exhibit behaviors such as illusions
that an AI engineer might consider to be defects to be overcome
by inventing a better machine A scientist seeking to discover
the substrate for human intelligence could use such quirks to
differentiate among models that otherwise have similar capabilities
(Loeb, 2022).

As David Marr pointed out, the interpretation of any
experimental data regarding brain function depends on a top
level “theory of computation” for how a capability is divided into
a series of steps that might be performed by different parts of
a brain or a machine (Marr, 1982). Such a theory might be
wrong, but at least starting with a theory affords an escape from
circular arguments like “the cerebellum does whatever it is that
you can’t do when you don’t have one.” Neurophysiologists have
long hoped that theories of computation would lead to testable
hypotheses that might invalidate at least some theories, but the
diffuse and recurrent nature of neural circuitry often makes such
tests inconclusive. This is embodied by the cynical universal
finding of neural recording that “some go up, some go down and
some stay the same.” The theory of computation underlying an
engineered machine or computer model is fully known (albeit not
always clearly articulated). Differences in performance between
such model systems and humans should provide a test of theories
of neural computation, assuming that the machine implements its
theory of computation adequately at the deeper levels that Marr
identified as algorithm and hardware.

In the 73 years since Donald Hebb’s classic proposal regarding
The Organization of Behavior (Hebb, 1949), increasingly ambitious
implementations of neuromorphic machines such as deep learning
ANNs have achieved remarkable success at specific tasks that were
once thought to be hallmarks of uniquely human intelligence,
e.g., identifying objects in complex scenes, interpreting running
speech, playing strategic games. At the same time, we have come
to realize that such capabilities do not generalize well to the robust
interactions with unstructured physical environments that can be
demonstrated by a 5-year-old child (Loeb, 2022). The engineers
who built the machines that now outperform humans in tasks like
playing chess may resent this “moving of the goalposts” for AI,
but the need to do so is another aspect of the lack of a theory of
computation. Apparently, we do not even understand what needs
to be computed to achieve humanlike intelligence, much less how it
is computed.

The biological substrate

At the least, a bio-inspired theory of computation for an
artificially intelligent machine would be expected to exhibit various
capabilities and limitations that are well-known in humans but
which have often been absent, elusive or overlooked in AI
models. This review examines the thesis that various of these
phenomena arise in the recurrent loops of the thalamocortical
circuits that are not represented in most ANN models of
intelligence. The connectivity and function of those circuits
has been the subject of much research and speculation over
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the past decade. Some of the histologically distinct nuclei
of the thalamus have clear associations with specific sensory
modalities (lateral geniculate conveys visual information from
retina, medial geniculate conveys auditory signals, ventroposterior
nuclei convey somatosensory signals), but current views reject
the original description of thalamic circuits as “relays” whereby
sensory information is simply conveyed to cerebral cortex for
all processing (Sherman, 2007). In general, whenever neural
signals pass through synapses from one neuron to another,
there is the opportunity for substantial transformation. This is
particularly likely when those signals pass through interneurons
that are also receiving recurrent feedback from the ultimate
destination of the transformed signals, as is the case in all parts of
the thalamus.

A more general and functional view of the thalamus (see
Figure 1) divides its circuits into those driven primarily by
ascending sensory information and those driven primarily by
descending cortical signals (Halassa and Sherman, 2019). The
former have been called “core” or “first-order” neurons but are
herein called “Narrow” because of fairly tight convergence of their
inputs and narrow divergence of their cortical outputs, illustrated
as vertical projections between an individual sensory (S) cortical
area and one thalamic nucleus which receives ascending sensory
information at the left of Figure 1 (ellipsis indicates similar
organization for all primary sensory cortical areas). The latter have
been called “matrix” or “higher-order” neurons but are herein called
“Broad” reflecting both their cortical input convergence and output
divergence, illustrated as the connections of one thalamic nucleus
with multiple sensory, associational (A), and motor (M) cortical
areas. It is likely, however, that the Narrow and Broad circuit types
reflect a continuum rather than a dichotomy (Wolff and Vann,
2019).

The remainder of this review explores the AI implications of a
theory of thalamocortical function put forward by Michael Halassa
and colleagues (Rikhye et al., 2018a; Wang and Halassa, 2022),
based on the detailed neuroanatomical and electrophysiological
studies of S. Murray Sherman and colleagues (Sherman, 2004,
2007, 2011, 2016; Theyel et al., 2010; Lam and Sherman, 2011;
Sherman and Guillery, 2013). At the risk of over-simplifying,
the thalamocortical loops appear to govern how much attention
the cortex pays to incoming sensory information (! icon in
Figure 1). Such information might: (i) be largely ignored, or
(ii) lead to more general activation of the primary cortical
area to which it projects (a putative function of the Narrow
circuits), or (iii) lead to more widespread activation of other
cortical areas, including those responsible for formulating and
commanding exploratory actions (a putative function of the
Broad circuits). This view is consistent with a computational
model of the Narrow circuits involved in transmission of afferent
information to cortex, in which the corticothalamic synapses that
tend to be located on distal dendrites were shown to strongly
complement afferent EPSPs from proximally located synapses
(Destexhe, 2000). Elements of Broad thalamocortical function such
as the interactions between frontal cortical areas and mediodorsal
thalamus are just starting to be incorporated in biologically
plausible ANNs to account for humanlike decision-making in
which strategies are context-dependent (Rikhye et al., 2018b;
Hummos et al., 2022).

Importantly, most thalamic circuits of both types have strong
reciprocal connections with basal ganglia (Haber and Calzavara,
2009; Arber and Costa, 2022), a midbrain subsystem that appears
to generate value judgments based on experience of rewards and
punishments (Schultz, 2016). Thus, decisions to ignore or further
analyze incoming sensory signals or to pursue additional sensory
signals through active exploration depend on the equivalent of a
cost-benefit analysis, consistent with human behavioral strategies in
time-constrained perceptual tasks (Smith et al., 1982). In Figure 1
the thresholds for these decisions in the Thalamic Nuclei are
modulated by the background activity from the Basal Ganglia. This
added functionality accounts for the tendency of human capabilities
and failings to be highly dependent on circumstances that are
independent of the cognitive tasks themselves such as reward
schedules (Fröber and Dreisbach, 2014). The thalamus also receives
direct input from the amygdala, particularly to the inhibitory
thalamic reticular nucleus (Zikopoulos and Barbas, 2012). Diffuse
inhibition from this pathway has been added to the conventional
model of thalamocortical transmission of sensory signals to account
for cortical attention based on emotional state (John et al., 2016).

The extensive reciprocal connectivity between the thalamus and
all cortical areas and the strong dependence of cortical function on
signals from the thalamus suggests a theory of computation that
leads to more than the sum of the parts. As an analogy, consider the
central processing unit of an early computer. It has separate types
of circuitry (usually in separate locations) for fetching and storing
data and instructions and for registers that interpret the instructions
and perform calculations on the data. Combining complete but
separate understanding of each type of circuit would not provide
useful insights into what the computer can do.

Attention and saliency

The evolution of the vertebrate central nervous system seems
to have been driven by the trade-offs inherent in maximizing the
amounts of sensory information available while minimizing the
time required to respond effectively to this information flood. If
computational resources are limited, then attending to some stimuli
implies ignoring others (valve icon in ascending pathway to sensory
cortex in Figure 1). If memory capacity is limited, then unattended
and evanescent information in the sensory data stream will be
irrevocably lost. The sensory features that drive attention are said
to be “salient”; careful selection of those features is critical for the
survival of the organism.

Salience has been particularly well-studied in the visual system,
where it can be divided into bottom-up and top-down features (Li,
2019). Both have been attributed to corticocortical circuits but seem
also to involve corticothalamic circuits:

• Bottom-up salience has been attributed to patterns of
surround inhibition among feature detectors within the visual
cortex. This results in local peaks of neural activity that
correspond to regions of the visual field that are heterogeneous
(Li, 2022), even if the heterogeneity itself is not consciously
perceived (Watanabe et al., 2011). Bottom-up visual flow
comes through the lateral geniculate nucleus of the thalamus,
which has rich reciprocal connections with the cortical feature
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FIGURE 1

Corticothalamic recurrent circuits support similar computational functions in all cortical areas. The transmission of sensory information from all
receptor modalities (except olfactory) to cortex is modulated in thalamus (valve symbol) and the excitability of the multiple primary sensory (S)
cortical areas to that information is modulated by Narrow thalamocortical projections (!). If the sensory information is incongruent with any of
the familiar expectations, corticothalamic activity leads to activation of Broad thalamocortical projections from non-sensory thalamic neurons that
recruit cognitive processing by other sensory, associative (A) and motor (M) cortical areas, often culminating in the identification of an exploratory
action to obtain additional sensory information about the unknown object. The thresholds for these thalamic recruitments of cortical functions
(including overt exploratory actions) are set by the Basal Ganglia in consideration of a risk-benefit analysis. The Broad thalamocortical projections
are also capable of Hebbian potentiation of their synapses onto currently active cortical neurons, providing a snapshot memory (camera icon) of the
incongruent sensorimotor activity that can be replayed off-line by spontaneous activity in those thalamocortical neurons. The general locations of
cortical inputs and outputs are shown by layers. The corticothalamic system adds sophisticated cognitive decision-making to a subcortical system
(tectum, reticulospinal system, and cerebellum) that is itself capable of fast and accurate sensorimotor performance. Collateral discharge from this
system passes through thalamic nuclei to motor cortical areas.

detectors. Furthermore, the primary visual cortex has rich
reciprocal connectivity with the pulvinar and mediodorsal
nucleus of the thalamus, which receive low-level visual
information from the superior colliculus. That midbrain
structure has its own internal saliency system of reciprocal
inhibition that enables it to direct gaze selectively to one of
many possible targets (Fecteau and Munoz, 2006).

• Top-down salience denotes the ability of the cortex to
use high-level contextual information to increase the
responsiveness of lower-level stages to signals that are
expected in that context. Again, these can be attributed
to long distance, recurrent corticocortical projections but
much of that information flows also from prefrontal cortex

through mediodorsal thalamus. In the extreme, projections
of expectations has the potential to recreate the patterns of
neural activity associated with a stimulus that is mentally
recalled rather than physically present (Bergmann et al.,
2016). Illusory perception occurs normally during dreaming,
a function that depends on spontaneous thalamocortical
activity.

Salience has been less studied for non-visual senses but
it is probably as important. Behaviorally relevant changes
of receptive fields to temporospatial patterns of whisker
stimulation have been reported in rat somatosensory
barrel cortex (Ramirez et al., 2014) and appear to be
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related to thalamocortical activity (Zhang and Bruno, 2019;
Rodgers et al., 2021). Ferrets performing a complex acoustic
discrimination task can dynamically retune the spectral receptive
fields of neurons in primary auditory (A1) cortex to improve
their performance on the task (Fritz et al., 2007). Importantly,
expectations based on visual perception can create illusory auditory
percepts (Mcgurk and Macdonald, 1976) and expectations based
on auditory percepts can create illusory tactile percepts (Jousmäki
and Hari, 1998). Such intermodal illusions provided support for
a “global workspace” model of conscious attention (Baars, 2007)
but they can arise without conscious perception (Ching et al.,
2019). During a sleeplike state induced by ketamine/xylazine
anesthesia in rats, the intracellular responses of neurons in primary
somatosensory (S1) cortex to repetitive patterns of electrotactile
stimulation of the paw were modulated by microstimulation of
remote cortical areas that generated no direct responses in S1
(Etemadi et al., 2022). The Broad thalamocortical system seems
well-suited to such widespread, multimodal integration.

Active exploration

The common experimental paradigm of stimulus-response
biases theories of computation toward a hierarchy of signal
processing: temporospatial patterns of primary afferent activity
followed by successively more compressed (i.e., abstract)
remappings and ending with motor responses. This hierarchy
breaks down, however, when corticothalamic circuits are
considered from the perspective of continuous behavior involving
sequences of exploratory movements and extracted percepts (Loeb
and Fishel, 2014). Anterolateral and primary motor cortex and
associated ventromedial thalamus have relatively Narrow loops
(vertical projections and valve icon at right side of Figure 1).
These are anatomically similar to those of primary sensory cortex
(Collins and Anastasiades, 2019) but they can be thought of
as the highest order of cognitive processing. Thalamocortical
activity is necessary for the amplification and release of a voluntary
movement plan from motor cortex (Sauerbrei et al., 2020) and
for widespread recruitment of sensory cortical areas that might
provide feedback to control the movement (Talati et al., 2005). This
might arise directly from the Narrow corticothalamocortical loops
of motor cortex and/or they might arise in a three component loop
from cortex to striatum to thalamus and back to cortex (Şengör
et al., 2008). Both would be consistent with the “actor-critic”
theory of the role of the basal ganglia in reinforcement learning
(Joel et al., 2002). Actor-critic systems that compare new data
to model-based predictions have been widely developed for
movement sequencing in robotics applications (Ciosek et al., 2019;
Clavera et al., 2020).

The decision to engage an exploratory movement will have
perhaps the broadest possible effects on perception. These action-
perception loops result in a different type of “recurrency” from
that discussed below for cortical circuits. The sensory inputs to
somatosensory and visual thalamus are strongly dependent on the
hand movements and gaze shifts mentioned earlier. The same
stimulus features that drive the P300 (rarity and importance)
are correlated with widespread orienting reflexes that have
both skeletomotor and autonomic components (Donchin, 1981);

these constitute physiological indicators of “awareness”. Purely
psychological constructs of behavior similarly relate awareness to
perception and action (Mackay, 1990).

For historical and methodological reasons, the thalamic nuclei
are usually considered in relation to sensory transmission and
processing. For historical and clinical reasons, the basal ganglia are
usually considered in relation to motor output (as in the akinesia
of severe Parkinson’s disease). Both, however, have strikingly
similar patterns of connectivity with each other and with all
areas of cortex—sensory, associative, and motor. All cortical areas
have qualitatively similar, layered circuits both intrinsically and
extrinsically (Diamond, 1979).

Motor cortex must interact with the phylogenetically older
midbrain tectum, which subserves multimodal sensorimotor
exploration and integration in primitive vertebrates that have
little thalamocortical function. Even in mammals, the superior
colliculus of the tectum is capable of selecting visual, auditory, and
tactile targets for attention and initiating coordinated movements
to acquire those targets through gaze saccades of eyes and
head (Corneil, 2011), ear pinna movements (Stein and Clamann,
1981) (uniquely impoverished in humans), reaching with arms
(Pruszynski et al., 2010) and positioning the feet (Weerdesteyn
et al., 2004). Orienting reflexes such as gaze saccades and posture
shifts originating in either tectum or cortex start out as high-level
goals that require kinetic elaboration and coordination by centers
in the brainstem reticular formation and spinal cord that are under
cerebellar control (Sparks et al., 2001; Loeb, 2021).

The Narrow projections of various anterior thalamic nuclei to
frontal cortical areas for limb and eye movement carry collateral
discharge activity from superior colliculus and cerebellar deep
nuclei (Sommer, 2003; Sommer and Wurtz, 2008). From the
perspective of the cortex, this constitutes “sensory” information
about the autonomous executive function of these subcortical
motor centers. The motor cortical areas might then ignore, attend
to, augment or countermand these actions. The thalamocortical
system builds upon these subcortical capabilities (bottom half of
Figure 1) rather than superseding them. Cortical efferents (not
illustrated) project to and modulate all of them (Gallivan et al., 2018;
Arber and Costa, 2022; Contemori et al., 2022).

Selecting and performing an exploratory action implies a
hypothesis about the likely identity of the unknown entity that
is the source of the sensory data. There is a long history of
theories of cognition in which the brain formulates and then tests
predictions about the entity that might be the source of sensory
information, recently reviewed by Siman-Tov et al. (2019). Bayes
theorem provides a formal basis for computing the probabilities of
various identities of such unknown sources (Bayes and Price, 1763).
The thalamocortical system has been proposed as the substrate
for the generation of predictions of sensory information based on
such probabilities and their comparison with actual sensory signals
(Friston et al., 2017a).

Inverting Bayes theorem provides a formal basis for identifying
the exploratory action that is most likely to disambiguate the
probabilities of those sources (Fishel and Loeb, 2012). The
reciprocal connectivity among cortical areas shown by the
horizontal arrows in Figure 1 provides a mechanism for aligning
the sensory and motor aspects of this hypothesis. The modulatory
function of the sensory thalamus provides means to promote
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those aspects of the ascending sensory information that are
most salient for the hypothesis. The sensory cortex must then
compare the incoming sensory data to the mind’s eye recall of
the salient sensory data to decide if the hypothesis is confirmed
or refuted. If these two types of data are insufficiently congruent,
a broader consideration of the data is warranted, likely involving
more abstract cortical levels (Jordan and Jacobs, 1994). Persistent
incongruence requires consideration of alternative sources and,
eventually, exploratory actions to acquire additional data. All these
processes seem amenable to neuromorphic computing (Friston
et al., 2017b) but most have yet to be implemented as such
in ANNs.

Recurrent networks

Most connections between subsystems of the central nervous
system are reciprocal rather than unidirectional. Neuromorphic
models with such recurrent loop connectivity pose special
computational challenges. The recurrent circuits can amplify
transients into epileptic-like instability, a problem that can be
mitigated by introducing synaptic shunting mechanisms that have
a clear basis in neuronal biophysics (Rongala et al., 2021). Learning
based on synaptic plasticity in such recurrent, convolutional ANNs
tends to result in unphysiological expansion of receptive fields, a
problem that can be overcome by adding gates to control spread of
excitation (Wang and Hu, 2022).

Cerebral cortex contains two different recurrent pathways:
corticocortical and corticothalamocortical. Corticocortical
pathways such as the well-described surround inhibition among
cortical columns appears to account for simple phenomena such
as feature detectors (Hubel and Wiesel, 1962) and more complex
ones such as inference about partially occluded objects as required
by CAPTCHAs (Completely Automated Public Turing test to
tell Computers and Humans Apart; George et al., 2017). Adding
Narrow-type thalamocortical gates to a detailed neuromorphic
model with multiple cortical layers and interconnected columns
(see Figure 2) accounts well for some illusory visual percepts that
humans generate (George et al., 2020). It provides an anatomically
realistic basis for imagined percepts and their comparison with
sensory information. The Broad thalamocortical circuits predict
that recalled visual images should produce more diffuse excitation
of early stage cortical areas than did the original images, which has
been reported recently (Favila et al., 2022).

Interestingly, the two main groups publishing theories and
models of recurrent thalamocortical function started from
different perspectives (Halassa and Sherman, 2019 from academic
neuroscience; George et al., 2020 from industrial artificial
intelligence) and have not cross-referenced each other. Much
of the work in deep-learning AI is structured as factor
graphs, a general mathematical tool for factorizing complex
functions into local functions operating on limited subsets
of variables (Kschischang et al., 2001). Unfortunately, much
AI research uses functions such as back-propagation that are
not constrained by neuromorphic considerations, although a
neuromorphic approximation of back-propagation has been
described (Neftci et al., 2017). George et al. (2020) provided
neuromorphic realizations of the local functions that they used,

which should generate testable hypotheses about neural activity that
might be recorded in corticothalamic circuits.

Recurrent or convolutional ANNs have mostly been used
to generate fixed sequences such as procedural motor memory
(Paine and Tani, 2004). They have been applied to syntactical
transformations in language translation, but they can be replaced
in that application by training a network to attend to different
positions in the input and output syntax (Vaswani et al., 2017).
ANNs that employ back-propagation provide an opportunity to
use top-down feedback to amplify and effectively attend to those
aspects of the input signal that are most salient for a given percept
(Zhang et al., 2018). Localized recurrence in reciprocally connected,
biologically plausible Hopfield neurons has been suggested to
increase the memory capacity of such networks (Krotov and
Hopfield, 2021).

Many of the developmental and regulatory details of
thalamocortical connectivity probably reflect mechanisms
to mitigate instability inherent in recurrent circuits and the
consequent clinical dysfunctions to which cerebral cortex appears
to be prone. Corticothalamic circuits include more complex
synaptic organizations than those found in most ANNs. These
include triads with GABAergic inhibitory interneurons (Sherman
and Guillery, 2013) and hyperpolarizing metabotropic glutamate
receptors (Sherman, 2014). Such details are important for the
algorithmic and implementation levels of understanding rather
than the theory of computation level considered here, but they
provide yet more opportunities for bio-inspired improvement of
ANNs, as proposed and demonstrated by George et al. (2020).

Phenomena to be replicated and
explained

Long-term retention

Artificial ANNs are subject to “catastrophic forgetting” in which
the constant adjustment of their gains to recognize new objects
tends to degrade old memories of previously experienced objects
(Grossberg, 1976; French, 1999). A recent review by a large working
group of the inverse challenge of “lifelong learning” identified sets
of performance features and mechanisms that appear to account
for biological performance and identified examples of ANNs that
incorporated analogous mechanisms (Kudithipudi et al., 2022).
Many of these involve added executives that replay and refresh old
memories (González et al., 2020) or generate new memory elements
as needed (Aimone et al., 2009) or enable metaplasticity in only
a limited subset of neurons and stabilize the synapses of other
neurons after learning (Kirkpatrick et al., 2017; Masse et al., 2018).
Simultaneous plasticity in multiple parts of the highly distributed
biological nervous system poses an even greater challenge as higher
levels contend with changes in the behavior of the lower levels on
which they must build (Wolpaw and Kamesar, 2022).

The gating function of the thalamocortical system suggests
a strategy to avoid the unwanted plasticity in the first place by
blocking the entire ANN from further consideration of input data
that are recognized as likely to arise from, hence congruent with,
a previously identified entity. The computation of expectations
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FIGURE 2

Recursive Cortical Network (RCN) model of primary visual cortex reproduced from George et al. (2020), with permission of the authors. (A) Model
of microcolumn architecture with separate computational elements for feedforward and feedbackward computations associated with cortical layers
1–4 and 5–6 + thalamus, respectively. It uses factor graph notation for message passing between nodes (circles) via distributed, weighted projections
(squares) that are integrated at nodes according to summative or multiplicative functions that can be realized neuromorphically. Messages pass in
both directions along lines illustrated according to recursive connections among neurons within the microcolumn. The messages represent belief
propagation based on the probability that a given feature is present in the pixel data from the retina. (B) Neuroanatomical representation of a model
of visual cortex with columns for color detecting “blobs” and contour feature detecting “interblobs.” Lateral connections among Feature detectors
allow Pool neurons to generalize contour feature detection across retinal locations. Intracortical feedback circuits generate illusory contours and
their filling with adjacent color features. Narrow-type corticothalamocortical feedback results in Explaining Away, whereby partially occluded images
are readily perceived because the occluding object provides an explanation for the missing contours. Broad-type corticothalamocortical projections
generate Gated feedforward projections to other cortical areas. See George et al. (2020) for mathematical description of the various message passing
functions and simulations of these visual perceptual phenomena.

and their comparison with sensory data was first suggested as a
solution to this problem in ANNs (Grossberg, 1987) and has been
implemented in a modern ANN (Brna et al., 2019). The amount
of sensory data that gets to cerebral cortex and the extent of the

response to those inputs is modulated by thalamus in response to
corticothalamic feedback. If the initially arriving sensory data are
sufficiently congruent with current expectations, the thalamus can
shut down further processing of the sensory signals, which would
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greatly limit the effects of any cortical NN plasticity. Thalamic and
cortical activity consistent with suppression of context-irrelevant,
multimodal sensory cues has been reported (Rikhye et al., 2018b).
Conversely, if the initial sensory data are incongruent, the thalamus
can sustain and expand the transmission of sensory data to
broader regions of cerebral cortex, thereby enabling NN plasticity
to integrate multimodal sensory data with the exploratory action
that gave rise to these data. The repeated recall of memories of some
entities must itself be protected from degrading other, less recalled
entities, a requirement that can be met by the separation of the
forward and backward message-passing circuits in a model of the
thalamocortical system (George et al., 2020).

Central to the theory of computation presented in Figure 1 is
the requirement for an incongruency detector. This is a general
circuit that is triggered by a failure of the incoming data to be
accounted for by the mind’s eye hypotheses about the identity of
the source of those data. The P300 is evidence that such a detector
exists within the thalamocortical circuitry. One way to embody such
a detector in a conventional NN system is to note that the patterns
of activity in the output layer of a NN are fundamentally different
when the NN is exposed to a novel entity as opposed to one on
which it has previously been trained. The latter output pattern will
be highly converged on one output element whereas a novel input
pattern will generate weak and diffuse activity on many output
elements. Uncertainty is correlated with a shift of the EEG from
regular alpha rhythms (8–15 Hz) to a more excitable and diffusely
active state (Kosciessa et al., 2021). The EEG changes have been
interpreted as indicative of thalamocortical activation but they may
have started with the different patterns of corticothalamic activity
arising from congruent vs. incongruent sensory data.

Working hypothesis
The thalamus detects the degree to which ascending sensory

information is recognized by cortex as congruent with an existing
memory. If the congruence is over a threshold set by the basal
ganglia, transmission of the sensory information is blocked,
preventing synaptic plasticity from over-writing the existing
memories.

Single-trial learning

The large number of presentations of input data required
for ANNs to converge on solutions is usually incompatible with
real-world experience, in which it may be impractical or dangerous
to continue to experience firsthand the sensory signals associated
with a novel and perhaps threatening entity. This might be an
argument against the biological validity of the whole “data hungry”
ANN enterprise as currently modeled. Another way to address this
challenge, however, is to add “snapshot” circuitry (camera icon
in middle of Figure 1) that can save the novel input state plus
regenerative circuitry to recreate it “in the mind’s eye” (recurrent
arrow on camera icon). Such a boost to memory persistence has
been attributed to hippocampus (Duszkiewicz et al., 2019), which
appears to be a primitive version of neocortex that has similar
thalamic connectivity (Aggleton et al., 2010). Thus learning appears
to be effected by only one real-time experience with the novel

entity, but replaying of the snapshot during conscious recall or
dreaming provides the repetition required for synaptic plasticity
in the biological NN to recognize and deal appropriately with the
entity if encountered again in the future.

Single-trial learning that eventually defines a new category of
entities is essentially the extreme opposite of a thalamocortical
decision that the sensorimotor data are a good-enough match to
a familiar category. If the incongruent sensory data hypothesized
above continue to appear to be both novel and important after
consideration by the whole of cortex, then rapid long-term
potentiation (LTP) in the thalamocortical circuits could effectively
record the concurrent activity patterns during the initial
presentation. The presence and amplitude of the thalamocortical
P300 wave appears to be correlated with the “memorability”
of sensory inputs (Donchin, 1981). Various forms of Hebbian
post-synaptic plasticity have been identified in cortex for most
of the sensory modalities conveyed through thalamus (Heynen
and Bear, 2001; Fox, 2002; Shyu and Vogt, 2009; Liu et al., 2011;
Audette et al., 2019; Williams and Holtmaat, 2019). The earliest
demonstrations of thalamocortical LTP were in motor cortex
(Baranyi et al., 1991), which is consistent with the fact that sensory
signals cannot be interpreted without considering the exploratory
movements with which they are associated (Katz, 1925; Loeb and
Fishel, 2014).

The circuits and mechanisms involved in LTP of
thalamocortical projections are sufficiently complex and selective
to support separation of the general arousal mechanism from
the snapshotting mechanism (Audette et al., 2019; Williams and
Holtmaat, 2019). The triadic circuits (Sherman and Guillery,
2013) have similarities to the Dense Associative Memory network
proposed for Hopfield ANNs (Krotov and Hopfield, 2021).

In addition to recording incongruent sensorimotor data for
further consideration, single-trial learning requires a mechanism
to replay the recording. Patterned spontaneous activity in adult
thalamus constitutes a local persistence of the widespread
spontaneous activity found throughout the developing nervous
system, which appears to be essential for the initial formation of
the anatomically orderly circuits found in adults (Martini et al.,
2021). Spontaneous, rhythmic activity in thalamus is conveyed to
cortex (Steriade, 1997), particularly during sleep (Steriade et al.,
1993). Such activity underlies at least some of the cortical plasticity
associated with “memory consolidation” (Chauvette et al., 2012).
Rats that are learning to run mazes generate hippocampal activity
during sleep that resembles the activity recorded during training
while awake (Ji and Wilson, 2007), consistent with the snapshot
hypothesis. Ironically, the same mechanism has been proposed to
replay and refresh old memories to avoid catastrophic forgetting
(González et al., 2020), but that seems to require a constantly
growing volume of such replays.

Criteria for snapshotting would usefully include “important”
as well as “novel”. The other major input to the various thalamic
nuclei comes from the basal ganglia (BG), a midbrain subsystem
that receives and learns from reward and punishment experiences.
Permissive signals from the BG to the thalamus appear to be
necessary for actions and other decisions proposed by all parts
of the cerebral cortex to be realized. Damage to the BG is
responsible for the well-known pathology of Parkinson’s disease,
which includes both difficulties initiating voluntary movements
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as well as various cognitive disorders related to intention (Solla
et al., 2011). Inhibitory output from the BG effectively adjusts the
thalamic thresholds for making decisions to ignore, attend to or
snapshot the sensory signals, according to the competing costs of
erroneous vs. delayed decisions.

Working hypothesis
When ascending sensory information cannot be reconciled

with any previously learned entity in cortex, the incongruity is
detected by thalamus and triggers thalamocortical activity that
potentiates currently active cortical synapses. Offline activation of
the same thalamocortical circuits then recreates the sensorimotor
signals so that synaptic plasticity can eventually learn to recognize
and deal with a new entity.

Illusions

Humans are notoriously bad eyewitnesses. If they choose to
attend to one aspect of a scene, they tend to overlook other
aspects in plain sight (Simons and Chabris, 1999). They jump
to conclusions about what they have witnessed from fragmentary
data and they have little sense of any discrepancies between
those conclusions and the original sensory data from which
they were derived. Those conclusions are highly biased towards
expectations derived from circumstantial information that may
be irrelevant or misleading (Buckhout, 1974). The top-down
saliency mechanism described above includes recurrent pathways
from high-level back to low-level cortical representations that are
associated with recall, imagination, dreams, and illusions. Such
reverse-order processing has been directly demonstrated during
recall of music (Ding et al., 2019). As discussed above, long-loop
recurrent connections are rarely modeled within ANNs because
of instability, but corticothalamic circuits include more complex
synaptic organizations that might mitigate such challenges.

One consequence of decision-making based on iterative
hypothesis testing is that it requires an uncertain amount of time
that depends on the number of iterations. Because there is already
a well-formed (but perhaps erroneous) hypothesis to explain the
sensory data, it may be better to accept the hypothesis and get
on with life. This will be particularly true if the BG have set
the thalamic threshold for noticing and reacting to discrepancies
fairly high. In fact, the default condition of the BG is a steady
inhibition of the thalamus (Goldberg et al., 2013). That is to
say, the cortex is enabled to pay attention to the details of the
incoming data only when experience has shown that the stakes
are high or the incongruencies with prior experience are large.
Once the preconceived notion becomes an accepted illusion, any
actual sensory data that might refute the illusion are discarded.
If the incongruence is above the lack-of-confidence threshold set
by the BG, the snapshot function described above can preserve
the ascending information that accounts for the incongruence (by
contrast, electronic memory is cheap and fast, so an AI machine
could easily retain all its raw data, but ANNs generally rely on
simple repetition).

The interplay among speed, accuracy, and incongruence can be
appreciated in the task of speed-reading or “skimming”—the ability

to peruse rapidly and summarize the content of a written document.
Many levels of perception, decision-making and active exploration
are refined as readers progress from the serial recognition and
sounding out of letters as employed by a young child, to the
ability to extract the essential contents of an entire book in less
than 1 h (Rayner et al., 2016). Readers at all levels use saccades
about three times per second to jump to the next bit of text to
foveate and decode, but a speed-reader makes large, variable jumps
based on internal hypotheses about what the text is likely to say
and where that hypotheses might usefully be tested. If a given
hypothesis is incongruent with the results of that test, the reader
makes a regression saccade back to earlier text that must have
been misinterpreted (inability to do so is a fundamental limitation
of RSVP technology—rapid-serial-visual-presentation of individual
words on a computerized display; Spence, 2002). If the text is
somewhat consistent with the reader’s preconceived notions about
the topic, the internal representation of the written message will
be mostly an illusory pastiche of the reader’s own memories rather
than the message intended by the writer. Interestingly, analogous
techniques for what is called rapid-reading of the tactile Braille
code by blind persons take advantage of the ability independently
to move and attend to the various fingers of the two hands to
simultaneously acquire and stitch together percepts from multiple
locations on the page (Mcbride, 1974). Both of these reading skills
depend on learning the syntactical structure of a given language as
a set of exploratory actions, a strategy that also underlies the recent
successes of natural language processors (Collobert et al., 2011).

Working hypothesis
If the ascending sensory information is deemed sufficiently

congruent with an expected memory, the thalamic shut-down
of further transmission to and processing by cortex results in
the illusion that the current experience is identical with the
remembered entity.

Robust generalization

The statement earlier about “robust interactions with
unstructured physical environments” needs a closer examination.
Compared to an industrial assembly line, a typical home is an
unpredictable jumble of objects but they are usually from familiar
classes. Dishes with various shapes and patterns might appear by
themselves on a countertop, under cups and utensils in a sink
or standing on edge in a dishwasher. Towels of various sizes
might be folded neatly on racks, hung on hooks or dropped on
the floor. Humans have no difficulty identifying an object’s class
and understanding what functions the object affords despite
such variability of presentation. They can do so equally well with
manual exploration in the dark as with gaze saccades in the light.
This is a much more robust form of generalization than has
been demonstrated in machine vision. It may be the product of
representing classes of objects as clustered patterns of associations
between exploratory actions and multimodal percepts (Loeb,
2022).

The antithesis of robust generalization is the susceptibility
of deep-learning NNs to adversarial attacks, whereby apparently
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insignificant or nonsensical patterns of sensory input are perceived
as consistent with complex memories. By contrast, humans are
subject to perceptual errors that are relatively subtle and can
be traced to sensible generalization (Coren and Girgus, 2020;
George et al., 2020). Humans explore a newly presented object
iteratively, with a purposeful sequence of active movements
such as gaze saccades and manipulation that tests plausible
hypotheses about the probability of its identification. NNs work
by “gestalt” perception in which all available data are processed
in one pass instead of progressive consideration of various
aspects of the high-dimensional data. In their present form,
they are incapable of a regressive reexamination of the data
in light of incongruous illusions as described above, despite
the fact that it is feasible to retain those data indefinitely in
electronic memory.

Iterative rather than gestalt perception can be supported by
gating mechanisms that focus perceptual attention on different
aspects of an incoming data stream and action mechanisms that
select and obtain new incoming data streams from a given object.
Both appear to be supported by thalamocortical circuits. Such
iterative perception provides a means to test hypotheses about
spatial relationships among perceptual features of objects to be
identified, the absence of which is usually exploited by adversarial
attacks (Dujmović et al., 2020; Cheng et al., 2022). Iterative
approaches to focusing on small objects in sparse scenes (Bueno
et al., 2017) or navigating through cluttered landscapes (Tai and Liu,
2016) have some operational similarities but do not accomplish this
goal.

Working hypothesis
The Broad recurrent thalamocortical loops cause the cortical

representation of a class of objects to consist of all multimodal
sensory experiences of the object associated with the exploratory
actions that gave rise to the sensory information. After receiving the
initial sensory data from a novel object, the thalamocortical loops
select a series of exploratory actions, providing a much richer set of
sensory data in which to look for similar memories.

High dimensionality

Current AI systems based on ANN technology suffer from
“the curse of dimensionality” (Bellman, 1957). Each of the possible
observations of an entity constitutes a dimension in a hyperspace,
whether the observations are pixels in an image, sound energy in
a spectrum or force on patches of skin. As the dimensionality of
the available sensory data about the world increases, ANNs must be
trained on exponentially larger datasets. In contrast, human experts
become more efficient as they tackle increasingly sophisticated
perceptual tasks. The curse of dimensionality is independent of
the data compression and dimensionality reduction associated
with the process of identifying an instance of an object class.
Thalamocortical circuits contribute to such compression (Komura
et al., 2013; Schmitt et al., 2017; Mukherjee et al., 2021) without
necessarily addressing the training problem. Iterative application
of attentional filters for different spatial frequencies of information
in ANNs improves the efficiency of processing high-dimensional,

multimodal sensory data but still requires massive training sets
(Jaegle et al., 2021).

The curse of dimensionality appears to be overcome by iterative
hypothesis testing and decision making (Fishel and Loeb, 2012;
Loeb, 2022), which may be an emergent property of the recurrent
thalamocortical circuitry. Bayesian inference uses the data from
one of many possible observations to adjust the probabilities of
various possible identities of the unknown entity. This requires
a stored database that provides information about the probability
of obtaining a given data value from each of those entities, but
it does not require experience with all possible combinations
of observations. If inference from that single datum does not
shift the probabilities to a definitive identification (i.e., the
expectations are incongruent with the sensorimotor data), the
inverse process of Bayesian exploration uses the same stored
database to identify which next observation to make. The data
from that observation is then used in an iteration of Bayesian
inference. These alternating, inverse processes continue until the
probability of one causative entity surpasses some threshold,
whose level should reflect the relative costs of error vs. delay.
Importantly, the order in which the successive observations are
performed is not fixed; it depends instead on the values returned
by the observations that drive the evolving probabilities. Regressive
repeats of previous observations are useful and have been observed
when identifying entities that are quite similar to each other
(Fishel and Loeb, 2012).

The internal representation of any entity can be described as
the centroid of clusters of previous observations in the hyperspace
of all sensory dimensions and the exploratory actions that gave
rise to them (Loeb and Fishel, 2014). This can be implemented
as a NN whose input layer consists of various observations and
whose output layer identifies entities that are mapped to these
clusters. The number of possible observations is very large, but this
can be addressed by multilayering, a form of vertical integration.
This is now common in deep-learning ANNs (Hinton, 2012)
and has a biological counterpart in hierarchical abstraction via
multiple cortical areas that successively process and integrate data
from multimodal sensors (Fuster, 2006). It is also important to
integrate data horizontally across dimensions related to various
sensory modalities and exploratory movements. The “Multinet”
NN architecture provides this function across visual tasks by adding
recurrent circuits that are consistent with corticothalamocortical
loops (Bilen and Vedaldi, 2016).

If repeated observations of a novel entity are incongruent
with all current output neurons, this new observational cluster
will eventually drive Hebbian plasticity to map to a new output
neuron, perhaps by subdividing a population of output neurons
that was previously tuned to the nearest cluster. Decision-making
to adapt an existing memory or create a new one has been observed
and modeled for human subjects dealing with perturbations to
previously learned sensorimotor tasks (Oh and Schweighofer,
2019). The repeated observations required for either process
might arise from replaying a snapshotted set of inputs rather
than real-time data from the novel entity, as noted above. This
affords opportunities to mix the data from one novel entity with
those of others in combinations that are not physically realizable
but which may facilitate the detection of common patterns
(Seligman, 1987).
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Working hypothesis
Thalamocortical circuitry recruits the motor and multimodal

sensory cortical areas that together contribute to the sensorimotor
associations that are the memory of all the experiences with that
entity. New experiences that are not sufficiently congruent with the
collectively sparse representation of all possible combinations of
this multimodal information are repeated until a new associative
memory is formed. The thalamocortical circuits cause the
cortex to ignore the sensory dimensions that are congruent
with previous experience and focus on those that are novel
and distinctive.

A unifying framework

The murky relationships among reality, memory, and illusion
have been the subject of much philosophical thought throughout
the history of various cultures1. Much of the discussion has been
informed by introspection, resulting in a circularity of logic that
has further troubled philosophers and psychologists (Schwitzgebel,
2019). As engineered systems for AI aim to replicate human
cognition, they will start to exhibit behaviors that have similarities
to what humans call awareness and consciousness. These will
be the emergent properties of circuits that are fully known
and testable, finally providing an escape from introspection. At
what point will we be comfortable applying these subjective and
introspective descriptions of human behavior to such engineered
systems or, conversely, accepting that these machines embody
human consciousness?

When confronted with a system of the complexity of the
CNS, it is natural to break it into manageable subsystems. The
distinctive anatomy and histology of different parts of the brain
provided an obvious starting point. The distinctive pathology
produced by selective lesions of such parts provided hints about
function. The concurrent rise of machines that could perform
some of those functions led to trying to find correspondences
between the anatomical parts of the brain and the block diagrams
of engineered systems, a common starting point for theories of
computation as defined by David Marr (1982). The methodology
of experimental neuroscience and the rapidly growing scale of the
literature, however, pushes individual neuroscientists to focus on
individual subsystems of the CNS and the neural activity that is
found there that correlates with experimental observations of very
specific behaviors. It is then natural to apply that local knowledge to
build bio-inspired machines that can reproduce those observations.
This was the original and ongoing inspiration for ANNs that could
perform perceptual tasks similar to those of cerebral cortex. It has
been the basis for theories of the spinal cord based on oscillators
and servocontrol, of the cerebellum based on error correction, of
the basal ganglia based on value and cost functions, etc.

A theory of general intelligence need not have functional boxes
that are isorepresentational with anatomically distinct areas of the
CNS. The interconnections among such areas are much more
dense and recurrent than those of engineered systems, suggesting

1 https://en.wikipedia.org/wiki/Reality

that much functionality arises from their interactions (Goertzel,
2014). As discussed here, bio-inspired, AI system designs that
include recently proposed functions of thalamocortical circuits may
account for many human capabilities and limitations that have been
difficult to reproduce in ANNs based solely on models of cerebral
cortex. The close integration of thalamus and cortex, two CNS
subsystems with very different internal architectures, seems to give
rise to computational behaviors that are more than the simple sum
of the functions inferred from each in isolation. Further integration
with other subsystems such as basal ganglia and tectum seems likely
to result in similarly nonintuitive emergence of systems behaviors.
One barrier to such integration is the fragmentation of research
into the disciplines and subdisciplines of neuroscience and those
of AI (much of which now occurs in commercial entities), that have
largely independent conferences and journals.

The emergent behaviors of complete neural systems include
quirks that arose as evolutionarily useful accidents whose benefits
once exceeded their costs. Later evolving parts of the CNS then had
to contend with these quirks. Such phylogenetic development likely
results in overall performance and individual mechanisms that an
engineer designing a system from scratch would eschew (Partridge,
1982). If the goal is to discover the basis for human intelligence
rather than to invent a better machine, then a model system
should have subsystems, connectivity and emergent capabilities and
limitations analogous to those of humans. From that perspective,
it does not matter whether the phenomena discussed above are
viewed as features or bugs. They must arise from the design and
function of a physical neuronal system, so they can and must be
produced by candidate computational models of this system.

To be sure, the history of theories of neural control based on
analogy to engineered technology contains many disappointments
(Loeb, 2021), but that, too, is progress. The hypothesis testing of
the scientific method is not fundamentally different from that of
everyday life:

“When you have eliminated the impossible, whatever
remains, however improbable, must be the truth.” Sir Arthur
Conan Doyle, stated by Sherlock Holmes.
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