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Abstract

For upper limb amputees, learning the control of myoelectric prostheses is difficult and

challenging. Introduction of newer prostheses with multiple degrees of freedom con-

trolled by various neural commands will make such training even more difficult. To

produce smooth and human-like movements, the user must learn to produce multiple

neural commands with precise amplitude and timing. To aid in training of the amputee

users, we have developed a realistic and motivating virtual environment (VE) consisting

of a physics-based target shooting game. The users’ neural commands such as EMG,

cortical neural activity, or voluntary movements of the residual limbs can be used to

control the movement of a simulated prosthesis to point and shoot at virtual targets.

In addition to the visual, sound, and performance feedback of the resulting movement,

the game provides reaction forces in contact points that can be used to drive haptic

displays. The timing measurements show that the physics-based simulation and render-

ing can be executed in real time in readily available PC systems. The target shooting

game was developed in musculoskeletal modeling software (MSMS) that has been

developed in our laboratory and is freely available for development of similar virtual

training applications.

1 Introduction

Compared to the human arm, the mechanical design and control of cur-

rently available prosthetic arms are primitive. The limited degrees of freedom

reduce the possible movements by the prosthetic arm and the primitive control

strategies produce unnatural, robot-like movements. Currently, the users of

myoelectric prostheses are limited to a control strategy that allows them to con-

trol one joint at a time. To grasp an object, for example, the patient may succes-

sively activate different sets of residual muscles to rotate the forearm, to flex the

wrist, and then close the hand, which produces slow and unnatural movements.

The control strategy may appear to be simple, but in practice, it is difficult to

master and tedious to execute. The patient must learn to produce noisy EMG

signals from muscles that are not naturally related to the controlled joints.

Furthermore, patients have no feedback from the myoelectric signals they gen-

erate, to know whether these signals are appropriate until the limb moves visibly
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(Scoufield & Schreiner, 2004). Myoelectric training

therefore tends to be difficult, time-consuming, and

stressful, even for relatively primitive prosthetic systems.

The training difficulty can be expected to increase

exponentially as the number of mechanical degrees of

freedom and the corresponding sources of neural com-

mands increase. For example, the targeted reinnerva-

tion procedure provides multiple sources of EMG com-

mands for control of multijoint prostheses (Kuiken

et al., 2009), but the patients must receive extensive

training before and after receiving the actual arm. Even

more ambitious research aims to use the command sig-

nals from multichannel electrodes implanted in the

brain’s motor areas to directly control the movement of

multijoint prostheses (Mulliken, Musallam, & Ander-

sen, 2008; Fraser, Chase, Whitford, & Schwartz, 2009;

S. P. Kim, Simeral, Hochberg, Donoghue, & Black,

2008).

Virtual training environments offer many advantages

for training the amputee patients and have been used

for training in other complex systems such as the use of

flight simulators to teach the operation of an airplane,

training human or primate subjects to perform motor

tasks (Nikooyan & Zadpoor, 2009; Kuhlen, Kraiss, &

Steffan, 2000; Mulliken et al., 2008; S. P. Kim et al.,

2008), training and rehabilitation of patients with neu-

rological disorders (Piron et al., 2005; Jack et al., 2001;

Holden, Dyar, Schwamm, & Bizzi, 2011), training the

control of paralyzed limbs by functional electrical stim-

ulation (Durfee, Mariano, & Zahradnik, 1991;

Davoodi & Andrews, 1998; Kirsch, Acosta, van der

Helm, Rotteveel, & Cash, 2001; Riener & Fuhr,

1998), and training amputee patients to operate their

myoelectric prostheses (see Section 2, Related Work).

Computer simulations can represent scenarios that are

difficult or impossible to create in real experiments.

Perturbations such as changing the size or shape of

objects can be introduced instantly; and the task diffi-

culty and the type and modality of the user feedback

can be enhanced gradually to improve learning without

being limited by the constraints and expense of physical

apparatus. Importantly, virtual training can be used in

the early stages of recovery from amputation when

training is critically important (Pons et al., 2005;

Malone et al., 1984) but cannot be delivered using

physical limbs.

Here we report on the development of a physics-based

target shooting game as a realistic, motivating, and

engaging environment to train the upper limb amputees

to operate their multijoint neural prostheses. The game

was developed using freely available software tools devel-

oped in our laboratory that have been described else-

where (Davoodi, Urata, Hauschild, Khachani, & Loeb,

2007; Davoodi & Loeb, 2011). The particular training

game was designed to identify general requirements and

demonstrate capabilities that can be retasked readily

using this application development tool.

2 Related Work

A number of studies have used simulated virtual

prostheses to evaluate the viability of novel prosthetic

concepts and train amputee patients to operate them

effectively. For example, Eriksson, Sebelius, and Balke-

nius (1998) used an animated hand to investigate the

feasibility of EMG control of a prosthetic hand with

multiple degrees of freedom. In a study by Sebelius,

Eriksson, Balkenius, and Laurell (2006), the movement

of a multi-fingered prosthetic hand, that was not avail-

able at the time, was represented by the animation of a

human hand in a virtual environment (VE). Such virtual

training environments enable the investigators to test

the viability of novel prosthetic concepts and refine them

before they are actually manufactured. A similar

approach was used by Soares, Andrade, Lamounier, and

Carrijo (2003), in which a human arm with a realistic

appearance was used to make a visual presentation of the

postures of a prosthetic arm corresponding to the

patient’s EMG commands. Dupont and Morin (1994)

developed a system to train and assess the myoelectric

control of upper limb prostheses by child amputee

patients. The training system used simple computer visu-

alizations of the hand posture. Evaluation of the training

system by 15 nonamputee adult volunteers showed that

all subjects improved at myoelectric control and that

they improved more in the early stages of training than

in later stages. Nishikawa, Yu, Yokoi, and Kakazu (1999)

demonstrated the efficacy of real-time training in VEs
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where they used primitive animations of the prosthetic

hand in place of the real prosthesis. The trained motions

were the desired postures the patients must achieve,

however, and did not include dynamic movements or

interactions with objects in the task environment. Smith,

Huberdeau, Tenore, and Thakor (2009) developed a

myoelectric decoding algorithm for continuous on-line

decoding of finger movements. To help the subject pro-

duce the appropriate EMG commands, virtual multijoint

prostheses in MSMS (Davoodi et al., 2007) were used to

display the decoded finger movements to the subject in

real time. Bouwsema, Sluis, and Bongers (2010) com-

pared myoelectric signal training for opening and closing

of the hand with a virtual trainer, an isolated prosthetic

hand, and a prosthetic simulator. The trainees had to

learn to produce the EMG commands for simple on/off

control of the hand opening/closing. For this simple

training task, they found that virtual training was as

effective as the physical simulators and there was no dif-

ference in training methods.

The above studies have all used animation-only VEs

where realistic physics-based movements and interac-

tions have been ignored. But the training tasks in these

studies were simple and included the production of dis-

crete commands to successively control few degrees of

freedom. Learning to continuously and simultaneously

control multiple degrees of freedom in a more sophisti-

cated prosthesis, however, is a more difficult task and it

remains to be seen whether this training can be per-

formed effectively by animation-only training environ-

ments. It has been argued that the transfer of skills from

virtual training to real-world training can be maximized

if the virtual task simulates both the appearance and the

dynamics of the real world with higher fidelity and real-

ism (Rose, Attree, Brooks, Parslow, & Penn, 2000;

Lourenco, Azeff, Sveistrup, & Levin, 2008; Nikooyan &

Zadpoor, 2009). The realism of simulations is especially

important for training amputees, because nonrealistic

movements are easy to detect and can negatively affect

the sense of presence and immersion. Moreover, if the

prosthesis does not behave realistically and violates the

physical constraints of the real limb, the trainee will learn

an incorrect control strategy that is not appropriate for

the control of the real limb.

3 Methods

The architecture and computing environment of

the target shooting game are shown in Figure 1. The

purpose of the game is to help the amputee user to prac-

tice and learn the control of a multijoint prosthesis in a

closed-loop virtual simulation environment.

To play the game, the amputee user must generate

voluntary command signals from one or more of the

available command sources to control the movement of

the virtual arm and the index finger to point and shoot

at the virtual targets. To facilitate learning, the physics-

based movement of the virtual arm and target objects,

sound, haptic feedback, and the resulting score are dis-

played to the trainee. The simulation and visualization

are executed on separate PCs to ensure that the complex

simulation and rendering can be performed in real time

(Hauschild, Davoodi, & Loeb, 2007). The simulation

PC is a regular PC that runs xPC Target real-time Kernel

(Mathworks, Inc.) and is responsible for acquiring and

decoding the user’s voluntary command signals, simula-

tion of movement and object interactions, execution of

game control logic, driving haptic actuators, and sending

the visual and sound feedback data to the visualization

PC via UDP. The simulation code was first developed

and tested in Simulink (Mathworks, Inc.), when runs

under Windows and then it was compiled and down-

loaded into the Simulation PC for real-time execution.

The visualization PC runs on the Windows (or Linux)

operating system and is responsible for rendering and

3D stereoscopic visualization of movement from the

user’s perspective and display of the sound and perform-

ance data to the user.

4 Virtual Models of Amputee User,

Prosthetic Limb, and Objects

The virtual model consisting of the amputee sub-

ject, prosthetic limb, handgun, targets, and the environ-

ment (see Figure 2) was developed using MSMS soft-

ware (Davoodi et al., 2007; Davoodi & Loeb, 2011).

The model of the amputee subject represents an aver-

age male with shoulder disarticulation amputation

(height 180 cm; weight 75 kg). The sizes and inertial
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properties of the segments for the average male subject

were obtained from anatomical tables (Winter, 1990). In

MSMS, any number of primitive shapes or 3D meshes

can be used to represent the appearance of each segment.

For the amputee model, the images of the segments

were exported from the human animation software

Poser (Smith Micro, Inc.) in the form of 3D meshes with

textures. These 3D meshes were then imported into

MSMS and overlaid on the segments of the amputee

model.

The model of the prosthetic limb was designed in Sol-

idWorks (SolidWorks Corp.) and represents a real limb

with 26 DOF (Bridges et al., 2010). The SolidWorks

model of the prosthetic limb was automatically imported

into MSMS and attached to the stump of the amputee

model. The automatically imported model is an exact

replica of the SolidWorks model in terms of appearance,

linkage, and mechanical properties. The actuation

motors for each joint were modeled in MSMS.

The gun was modeled as a segment that is attached to

and moves with the prosthetic hand. Multiple primitive

shapes were attached to this segment to form the appear-

ance of a simple handgun. The trigger was attached to

the gun via a pin joint allowing it to rotate about the axis

of the pin joint. The bullet was modeled as a spherical

segment that is attached to the ground via a 6-DOF

joint. This joint allows the bullet to move and rotate in

any direction with respect to the ground.

The target set is a combination of stationary and mov-

ing targets. The base of the target set is attached to the

ground via a 6-DOF joint allowing the whole target set

to be placed at any position or orientation within the

Figure 1. Architecture, computing environment, and the user interface of the target shooting game.
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environment. A circular plate with rings represents a tar-

get that is fixed to the base. A smaller moving target with

rings is attached to the base via a pin joint, allowing it to

move in a circular path around the fixed circular target.

Three pendulums with varying sizes are attached to the

base frame via pin joints, allowing them to swing toward

and away from the user when hit by the bullets.

5 Physics-Based Simulation of Movement

and Collisions

The virtual model of the game was exported into

Simulink using MSMS’s automatic export utility. It

included the Newtonian equations of motion for the

amputee user, the prosthetic limb, and the objects that

were all modeled using SimMechanics toolbox (Math-

works, Inc.). But the exported model did not include

the algorithms for decoding user commands, simulation

of object collisions, and game control logic that were

added manually as described below. The Simulink model

can be numerically integrated in Simulink (during devel-

opment and testing) and in real-time xPC Target PC (in

the deployment stage for patient training) to predict the

realistic physics-based motion of the virtual model in

response to user commands and external forces such as

gravity, friction, and collision forces.

Figure 2. Virtual model of the game in MSMS. The trainee can aim and shoot at the fixed target, moving target, or one of the

three pendulums.

Davoodi and Loeb 89



5.0.1 Simulation of Amputee User’s

Movement. Because the prosthetic limb is attached

to the end of the stump in the residual limb, its move-

ment is affected by the movement of the stump. There-

fore, any user movement that contributes to the move-

ment of the stump must be simulated. To simulate

amputee user’s movements, the joints of the amputee

model were forced (using SimMechanics’s motion actua-

tors) to follow the movement of their corresponding

joints in the amputee user. The motion of the amputee

user’s joints must therefore be captured and used to

drive the movement of the joints in a virtual amputee

model. A complete motion capture of the amputee sub-

ject can allow the subject to freely move in the environ-

ment while playing the game. But if the amputee subject

is confined to sitting on a chair and the trunk movement

is restrained, the measurements could be limited to that

of the stump and the head. The latter is used to control

the camera’s position and orientation to display the

scene from the user’s perspective.

5.0.2 Simulation of Prosthetic Limb

Movement. The joints of the prosthetic limb were

actuated by electric motors that were modeled in a C

program embedded in a Simulink S-Function. The full

dynamics of the electric motors were computationally

demanding and had to be simplified to enable real-time

execution. In the simplified model, the motor induct-

ance was ignored and the transmission was assumed to

be rigid. These had little effect on the simulation outputs

but resulted in a model that was easier to integrate

numerically and therefore could be simulated in real

time.

5.0.3 Simulation of Bullet and Targets

Movement. The bullet was simulated as a projectile

that leaves the gun with a known initial velocity in the

direction of the gun barrel at the time of shooting. From

that point on, the movement of the bullet is affected

only by gravity and the collision forces with the targets

(see Section 5.0.4). The fixed circular target was kept in

its initial position. The moving target was moved about

its pin joint axis at a constant angular velocity. The direc-

tion of movement and the magnitude of speed were

determined by the history of collisions with the bullet

(see Section 5.0.4). The movements of the pendulums

were simulated by solving the respective equations of

motion for a single pendulum subject to the forces of

gravity and collision with the bullet.

5.0.4 Simulation of Collision and

Contact. Two types of collisions and contacts were

modeled: the contact between the index finger and the

trigger, and the collision between the bullet and the

targets.

A spring model was used to simulate the contact

between the finger and the trigger. SimMechanics’ posi-

tion sensors were attached to the fingertip and the trig-

ger to obtain their current positions. When the fingertip

position reached the resting position of the trigger, con-

tact between them was established. From that point on,

the trigger followed the movement of the fingertip; if

the trigger moved beyond a threshold, the gun fired a

single bullet. The finger must be extended back beyond

the resting point of the trigger to disengage before

another bullet can be fired. When the fingertip was in

contact with the trigger, the displacement of the trigger

from its resting position and its spring constant deter-

mined the contact force between the trigger and the fin-

gertip. The simulated finger contact force was applied to

and resisted the finger’s simulated motion and can be

used to drive haptic feedback devices such as electrotac-

tile or vibrotactile stimulators placed on the skin of the

residual limb (K. Kim, Colgate, Santos-Munne,

Makhlin, & Peshkin, 2010; Nohama, Lopes, & Cliquet,

1995). Such haptic feedback enables the patient to feel

and therefore regulate the level of finger contact force

more effectively.

The collisions between the bullet and the targets were

detected and handled in two stages. First, the existence

of the collision between the bullet and the targets was

checked. When there was no collision, the bullet and the

moving targets continued their current movements.

When the bullet collided with the fixed circular target,

the point of collision was marked to reveal what part of

the target was hit. When the moving circular target was

hit, the target changed the direction of its angular

90 PRESENCE: VOLUME 21, NUMBER 1



motion and increased its velocity by a percentage, mak-

ing it harder for the trainee to target it the next time.

When the bullet hit a pendulum target, an elastic colli-

sion formulation based on the conservation of momen-

tum and kinetic energy was used to calculate the veloc-

ities of the bullet and the pendulum after the collision

(Van Verth & Bishop, 2004).

A number of modifications and customizations were

introduced to reduce the simulation times and to enable

the successful detection and handling of collisions

between the fast-moving bullet and the targets. Because

the targets were all confined to a limited space, the colli-

sion between the bullet and the targets’ bounding box (a

box large enough to contain all targets) was checked

first. The collisions with individual targets were checked

only if a collision with the bounding box was detected.

When a collision with a target was detected, no further

collision checks were made in that time step. Because of

the placement of the targets, it was impossible for the

bullet to collide with more than one target at a time. To

detect collision with targets, we initially checked the ex-

istence of penetration between the geometric shapes of

the bullet and the targets. This proved inadequate

because a fast-moving bullet could travel a long distance

in a single time step from one side of the target to the

other side, resulting in collisions that go undetected. A

possible solution was to significantly reduce the simula-

tion time step but the required time steps were then too

small for real-time execution. Therefore, a different solu-

tion was adopted that checked for the collision between

a line segment (from the bullet’s current position to its

predicted position at the end of a single time step) and

the geometry of the targets.

6 Game Control and Scoring

Interactions between the user and the target shoot-

ing game can be modeled by a state diagram that shows

all possible states and the set of rules that define the con-

ditions for state transitions (see Figure 3).

After the Initialization, the game enters the Ready

state where the gun is ready to fire and the trigger is

checked against its threshold position for firing. The user

must produce the commands to control the motion of

the joints in the prosthetic arm (including shoulder,

elbow, wrist, and index finger joints) to move the arm to

a stable aiming posture and pull the trigger. Once the

Trigger Is Pulled, the game enters the Bullet Fired state

in which the bullet is fired and moves in its projectile tra-

jectory and the collision between the bullet and the tar-

gets is checked. If a collision is detected with a target or

if the bullet has passed the target area without any colli-

sion, the Collisions Are Checked and the game transitions

to a Handle Collisions state. In this state, if there was a

collision, it is handled, and the trigger is checked against

its resting position. If the Trigger Is Released, the game

enters the Update Score state where the score is updated.

If the Score Is Updated, the game enters the Ready state,

which completes a full firing cycle. The firing cycle can

be repeated as many times as desired by the user. There

are processes that are performed continuously irrespec-

tive of the game state, including the acquisition and

decoding of the user commands, simulation of move-

ment in response to control inputs and collision forces,

calculation of fingertip forces for the haptic display, and

Figure 3. Game control logic modeled by a state diagram. The state

of the game can change only in the direction of the arrows subject to the

rules of the state transition.
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display of the scene to the user, including the latest score

and the appropriate sounds. The game control logic

described above was modeled in Simulink using State-

flow toolbox (Mathworks, Inc.). The Stateflow toolbox

is an extension to Simulink and is ideally suited for mod-

eling the states and the event-driven state transitions in

the target shooting game.

The points added to the total score depended on the

difficulty of the targeting task. When the targets were

missed, no points were added to the total score. The

points for hitting the fixed circular target depended on

the distance from its center. The points for hitting the

moving circular target depended on its current speed of

movement. The score for hitting the pendulum targets

depended on their size and their current speed of move-

ment. We intentionally kept the game logic simple

because learning the skills to control a myoelectric pros-

thesis is usually difficult for the target amputee popula-

tion (see Section 1). This allows the trainees to concen-

trate on learning the motivating and essential prosthetic

control skills that directly affect their quality of life and

well-being. As the trainee acquires more skills, the

game’s difficulty increases gradually to help maintain a

high level of motivation and engagement.

7 Measurement of Execution and

Rendering Times

We used the following methods to measure the

execution time of the physics-based simulations in real-

time PC and the rendering times of the virtual model in

visualization PC.

Because the physics-based simulations must be exe-

cuted in real time, they must be integrated using a fixed-

step numerical integrator. Therefore, we had to identify

a fixed-step numerical integrator and the largest integra-

tion time step we could use without losing simulation ac-

curacy or causing instability. The largest allowable time

step is important because the simulation code and any

other real-time processes such as the acquisition of user

commands must be executed within this time period.

We first obtained a reference accurate simulation result

by simulating the model with a variable step numerical

integrator (Simulink’s ode45). Starting from 0.001, we

gradually reduced the numerical integrator’s error toler-

ances until the simulation results stopped changing, indi-

cating that the reference simulation is already accurate

and its accuracy cannot be improved by further tighten-

ing of the error tolerances. We then simulated the same

model with fixed-step explicit (Simulink’s ode4) and

implicit (Simulink’s ode14x) numerical integrators and

identified the largest fixed time steps that reproduced

the reference simulation results. These were the largest

allowable fixed time steps, because further increase in

time step would make the simulation results inaccurate

and unacceptable. Finally, the largest allowable time

steps were compared to the actual execution times (in

real-time simulation PC running xPC Target toolbox) to

determine whether the model could be simulated in real

time.

To measure the stereoscopic rendering times, all of

the degrees of freedom in the model were animated by

sinusoidal inputs to simulate a worst-case scenario. These

motion data were generated by a Simulink model and

sent via UDP at a much higher rate than MSMS can pos-

sibly render. This ensured that there were always anima-

tion data in the MSMS buffer for rendering. MSMS ani-

mated the motion data in the buffer as fast as it could,

while counting the number of actually rendered data

frames. The average rendering time per frame of motion

data was found by dividing the total time of animation

into the number of actually rendered frames in MSMS.

8 Results

The physics-based target shooting game has a sig-

nificant amount of computation that must be performed

in real time and at a rate that is adequate for closed-loop

virtual training environments. To make these determina-

tions, we evaluated the game in a test configuration in

which various motion inputs (simulating the user’s vol-

untary commands) were used to control the motion of

the arm and the index finger to aim and shoot at the tar-

gets. We then evaluated the ability of the game control-

ler to successfully manage the state transitions in

response to the inputs, the ability of a typical simulation

PC to simulate the physics-based movement of the limb

and the game controller in real time, and the ability of a
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typical visualization PC to render and visualize the vir-

tual scene to the user in real time. The test configuration

included a PC with Windows 7, 2 � 3.33 GHz Xeon

CPU, 24 GB RAM, stereo-capable NVIDIA Quadro

FX4800 graphics card, NVIDIA 3D Vision with shutter

glasses, and a 3D stereo-capable ASUS 120 Hz monitor.

The same PC was operated under Windows or real-time

xPC Target operating systems to measure the rendering

times and the simulation execution times, respectively.

The testing with various inputs showed that the game

controller can control the state transitions smoothly and

robustly. There was no interruption in the flow of the

game as the arm was repeatedly moved to the aiming

posture and the trigger was pulled. More importantly,

the physics-based simulation of the movement and colli-

sions provided a compelling sense of realism and immer-

sion and appreciation of the interplay between the user

actions and their consequences.

The largest allowable fixed integration time steps for

the explicit and implicit integrators were 1 ms and 42

ms, respectively. The corresponding actual execution

times per integration time step in the real-time PC were

0.58 ms and 5.50 ms. Clearly, the simulation model can

be executed in real time using either implicit or explicit

integrators. With the explicit integrator, the difference

between the largest allowable time step and the actual

execution time is only 0.42 ms (1 – 0.58 ms), which pro-

vides an inadequate margin for execution of additional

but necessary real-time operations such as interactions

with the user. But with the implicit integrator, there is

an additional 36.5 ms (42 – 5.5 ms) that can be used as a

safety margin to perform additional real-time operations.

The average rendering time per frame of motion data in

the visualization PC was 17.91 ms.

The total loop latency for the game includes the simu-

lation execution time in real-time PC, the communica-

tion time for the UDP packets to travel from the real-

time PC to the visualization PC, and the rendering time

in the visualization PC. Because of the lack of specialized

tools such as photodetectors, we did not measure the

communication time for the UDP packets. But such

measurements have been performed by other researchers

who are using MSMS and its UDP communication pro-

tocol in their virtual training environment (Cunningham

et al., 2011). According to their measurements (personal

communication), the average UDP communication time

is 3 ms. Therefore, the total loop latency for the explicit

and implicit integrators were 21.49 ms (0.58 þ 3 þ
17.91 ms), and 26.41 ms (5.50 þ 3 þ 17.91 ms) result-

ing in real-time update rates of 46.5 Hz and 37.9 Hz,

respectively.

9 Discussion

Learning the operation of an upper extremity neu-

ral prosthesis is difficult and stressful. This difficulty is

expected to increase exponentially as prosthetic limbs ac-

quire more degrees of freedom, and as more neural com-

mand channels from various sources are used to operate

them. Training with physical prototypes is costly and

potentially dangerous. Further, training with physical

limbs is not readily available in the convenience of the

home, and it is impractical in the recovery period after

the amputation when training is critically important

(Pons et al., 2005; Malone et al., 1984). To complement

or replace the training with physical limbs, a number of

virtual training applications have been developed in the

past. To our knowledge, none has used physically realis-

tic simulations of the limb and its interactions with the

environment or made use of engaging and motivating

games, probably because the development of such soft-

ware has been prohibitively complex.

In this report, we have described the methods and a

flexible software and hardware framework that can be

used to develop a variety of high-fidelity simulations for

virtual training and rehabilitation. The virtual models of

the game were developed in MSMS software that is avail-

able free of charge. The simulation of movement, game

control logic, and real-time simulations were imple-

mented using Mathworks software toolkits that are

widely available and are relatively inexpensive for aca-

demic users. Our expectation is that these readily avail-

able modeling tools will facilitate the development of

physically realistic simulations and research studies that

could elucidate the role and validity of physical realism in

VR training applications.

We used a finite state diagram to model the game logic

that smoothly controlled the state transitions in response
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to the user inputs and object interactions. The overall

loop latency for the game showed that the complex com-

putations and rendering in the target shooting game

can be simulated at real-time rates that are significantly

higher than the minimum update rates of 20–25 Hz

for closed-loop virtual training with visual feedback

(Jorissen, Boeck, & Lamotte, 2006; Nichols, 1999).

These update rates leave a large block of time for other

application-specific processes such as the acquisition and

processing of the neural command data. We are planning

to obtain institutional ethics approval to clinically evalu-

ate the utility of the physics-based target-shooting game

as a safe and motivating environment to train the ampu-

tee users of the upper extremity prosthesis.
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