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Feedback Gains for Correcting Small 
Perturbations to Standing Posture 

Jiping H e ,  Member, ZEEE, William S. Lev ine , .  Fellow, ZEEE, and Gerald E .  Loeb 

Abstract-A dynamical model of the neuro-musculo-skeletal mechan- 
ics of a cat hindlimb has been developed to investigate the feedback 
regulation of standing posture under small perturbations. The model is a 
three-joint limb, moving only in the sagittal plane, driven by 10 muscu- 
lotendon actuators, each having response dynamics dependent on activa- 
tion kinetics and muscle kinematics. Under small perturbations, the 
nonlinear postural regulation mechanism is approximately linear. Sen- 
sors exist which could provide state feedback. Thus, the linear quadratic 
regulator is proposed as a model for the structure of the feedback 
controller for regulation of small perturbations. System states are cho- 
sen to correspond to the known outputs of physiological sensors: muscle 
forces (sensed by tendon organs), a combination of muscle lengths and 
velocities (sensed by spindle organs), joint angles and velocities (sensed 
by joint receptors), and motoneuron activities (sensed by Renshaw 
cells). Thus, the feedback gain matrices computed can be related to the 
spinal neural circuits. Several proposals for control strategy have been 
tested under this formulation. It is shown that a strategy of regulating 
all the states leads to controllers tbat best mimic the externally measured 
behavior of real cats. 

T HE use of control theory to provide insight into neurophysi- 
ology has a long history. As early as the beginning of the 

century, Sherrington and his colleagues described stretch re- 
flexes 1331, a phenomenon caused by the feedback action of 
muscle spindles, sensors of a combination of muscle length and 
rate of change of muscle length. 

Most of the previous work on muscle regulation has been 
based on the theory of single-input single-output (SISO) ser- 
vomechanisms. An example of particular relevance to our re- 
search is Merton's [27] proposal that the stretch reflex was an 
experimental observation of a motor control strategy, namely, 
servocontrol of individual muscle length by the spindles. Houk 
[13] later proposed the regulation of individual muscle stiffness 
(by sensors of both length and force) as the motor control 
strategy. 

It has recently become possible to trace the sensory feedback 
pathways through the spinal cord. It is now known that sensory 
feedback exhibits considerable cross coupling among the actua- 
tors [8], [14], [36]. In other words, the neuromuscular control 
system is certainly multiple-input multiple-output (MIMO). 

Because of the enormous number of neurons and reflex path- 
ways involved in the control of locomotion, a comprehensive 
identification of the structure of the feedback control circuitry is 
a formidable experimental task. A theoretical approach based on 
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a carefully developed model could shed light on its likely general 
structure, thereby providing guidance to experimenters. Such a 
model must consider the mechanical plant consisting of limb 
segments and musculotendon actuators and the feedback con- 
troller, consisting of the reflex pathways in the spinal cord 
circuitry. 

The regulation of static posture and the closely related but 
more difficult dynamic stabilization of locomotion are rich sub- 
jects for theoretical and experimental study. It is quite clear that 
the highly coupled mechanical structure of the articulated leg 
[22], [34] and complex dynamics of the musculotendon actuators 
[37] constitute a complicated nonlinear system. 

However, under small perturbations this highly nonlinear but 
smooth [13] system could be well approximated by a linear 
system. The applicability of the necessary assumption of linear- 
ity depends on the particular system and state being modeled. 
For example, humans are able to lock their knee joint. If we 
were linearizing about such a nominal posture, then our lin- 
earized model would not include a joint at the knee. However, 
cats do not lock their knee joint in normal standing. The fact that 
physiological sensors exist for all of the state variables provides 
plausibility for a linear state-feedback controller. Thus, a linear 
quadratic regulator (LQR) is proposed as a model for the 
neuromuscular regulation of posture. By choosing system states 
to correspond to physiological sensors, the resulting controller 
predicts feedback projection patterns of sensory feedback upon 
spinal interneurons, thus generating some testable hypotheses 
about interneuronal connections for experimental neuroscientists 
to investigate. 

The feedback gains of the LQR depend on the weighting 
matrices in the performance criteria. Several possibilities were 
investigated, including those which correspond to optimal MIMO 
implementations of both length and stiffness control strategies. 

We would be remiss if we did not mention the pioneering 
paper by Chow and Jacobson [4] which was the first to utilize an 
LQ model to study human locomotion. Our paper is able to 
improve, substantially, the relevance to neurophysiology by 
studying a simpler problem, the regulation of posture, and by 
utilizing a greatly improved model. 

In the next section, we deal with the dynamics of the neuro- 
muscular skeletal control system (NMSCS) and the formulation 
of the optimization problem. In Section 111, we explain the 
solution of the optimization problem and its relation to the 
proposed control strategies. In Section IV, we make some 
connections between the model predictions and experimental 
data. Finally, we point out some directions for future research. 
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the matrix of moment arms for 

B. The Dynamics of Musculotendon Actuator 

There are several approximations involved in this model. It is 
clear that cats use their toes to help maintain their balance. 
However, the forces produced by the muscles that control the 
toes are relatively small. Modeling the effect of these muscles is 
very complex because of the many independent articulations 
involved. Experimental data about toe muscle forces are very 
difficult to obtain. Thus, the toes have been replaced by a single 
point-ground contact. 

Another major approximation is the assumption that the effect 
m. 1. -tim of m-&letd model. (a) Anatomical terms and of the other three legs and the rest of the cat's body can be 
mudo group (numbem defined io Appendix, Table Dl). (b) Com.s~onding replaced by a force vector at the hip. While this would be 
mecbdal (vdum io Appendix, Table I). Abbreviations: unrealistic for many motions it is reasonable for some small 
S-mgmcnt length, m-segment mass, C-center of mass, &-joint angle; I 

eubscripe: f-foot, s-shank, I-thigh, a-ankle, k-knee, h-hip. perturbations. In particular, it is a reasonable model for experi- 
ments in which the contact point of one leg is displaced. 

In this study, a cat m b  is modeled in the sagittal plane by As the actuator, muscle in series with tendon (musculotendon) 
a three joint linkage system driven by husculotendon actuators. has always been one of the focal points of motor control 
More than 30 muscles on the limb are grouped into 10 according research [29], [3 11. Surveys of current knowledge about muscle 
to their attachment geometries and actions in the sagittal plane. physiology can be found in [7] and [26]. There are many 
The model preserves the intersegmental coupling and multiartic- unsettled questions about muscle properties and dynamics, some 
ular muscle structure, but has manageable complexity. The of which were investigated recently by Rindos [31]. For exam- 
complete model includes four major components: limb mechan- ple, the force-velocity relationship has been studied only during 
ics, musculotendon actuators, activation kinetics, and sensors. transitions of preactivated muscle from isometric to isokinetic 

[16] which produces large transients that tend to obscure the 
A. The Dynamics of the Musculoskeletal Mechanics more physiologically relevant behavior of muscles activated 

Mechanical structures similar to the articulated leg in our during isokinetic conditions. Many such complexities in muscle 
model have been studied extensively in both robotics research behavior have been reported by experimentalists, but we have 
and biomechanics. Therefore the derivation of the dynamics is modeled only those properties that seem likely to produce large 
omitted. The major differences are in the choice of coordinate effects under the kinematic conditions of cat locomotion. 
systems and the generation of joint torques. We use intersegment In a recent review paper, Zajac presented an excellent sum- 
joint angles ((p,, p,, p,)' = p) as the generalized coordinates. mary on modeling the musculotendon actuator [37]. Many forms 
The joint torques are generated by a set of 10 musculotendon of dynarnical model have been developed to suit different re- 
actuators. This can be seen from Fig. 1 where the mechanical search interests. Most of them are based on the structure shown I 

in Fig. 2. In modeling muscle, it is critically important to define t 
structure of the system is represented. I 

The dynamical equations of the system for a standing posture carefully the conditions under which muscles operate. At a 
are of the following form: standing posture, some muscles are excited to various degrees, 

while others are completely silent and generate only passive 

Ft + DF, forces when stretched. An applied perturbation of limb position ' = J - ~ ( ' ) [ M ( ~ '  ') + N(p)g + (2)' ] ( I )  will stretch some muscles while shortening others. This requires 
a muscle model that can deal simultaneously with both active 
and passive muscles under all dynamic conditions, that possesses 
the most relevant properties of musculotendon tissues, and that 

I 

the moment of inertia matrix; is simple to use. None of the muscle models found in the I 

the vector of centrifugal and literature fully satisfies the requirements because they either 
Coriolis forces; need some unobtainable parameters [9] or lose controllability for 
the coefficients for the gravita- passive muscles [38]. We modified Zajac's model to deal with 
tional force; the controllability problem while retaining the elegance of the 
the gravitational constant; original model. We assumed that all muscles in the model have 
the matrix of moment arms for the same dynamical characteristics and differ only in specific 
musculotendon actuators. The parameters. Hence, parameters in this section are all scalars 
musculotendon lengths L, = referring to a general musculotendon actuator. 
(L,,, L,,, . . . , L,,,)' are deter- In solving for the neuromuscular controls to achieve maxi- 
mined from the limb configura- mum height jumps, Zajac et al. [38] assumed a minimum 
tion and the attachment geome- activation (a(t) 2 a,, > 0) for all muscles. They assumed that 
try (see [lo] for details); individual muscle mass can be ignored compared to the l i b  

Ft = (F,, , F,, , - . . , F,,,)': the force outputs of the musculo- mass being driven and that muscle internal viscosity is negligi- 
tendon actuators; ble. They solved for L, from the relation 
the action of the body on the leg 
at the hip joint. Ft - Fp cos a = ~ , f ~ ( ~ m ) f  ~ ( i m )  a 

1 
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Fig. 2. Definition of muscle model. (a) Anatomical terms. (b) Correspond- 
ing mechanical components; Lp-total path length from boney origin to 
insertion; Libcombined length of tendon and aponeurotic sheet, which acts 
as a nonlinear spring to produce force F,; L,-length of muscle fascicles; 
M,-muscle mass; Fp-force due to parallel elasticity of passive muscle; 
Em-parallel viscosity of passive muscle; F,-force from active force 
generator. (c) Nonlinear spring stiffness curves for tendon (F, versus L,) 
and passive muscle (Fp versus L,) showing spring constants k for expo- 
nential (subscript e) and linear (subscript !) terms. (d) Force-length (f, 
versus L,)  and force-velocity (f, versus L,) components of active force 
generator, normalized to maximum isometric force F,, optimal length Lo 
and maximum shortening velocity u,,, at zero load. Curves are schematic. 
They show form but not precise numerical values. 

to get 

where 

Fp(Ft, cp) is the passive force of a muscle due to stretch, and 
is determined by the musculotendon force Ft and 
joint angle cp; 

4 is the maximum isometric muscle force the mus- 
culotendon actuator can achieve under activation 
(a constant for each muscle); 

~L(L,) is the force-length relation of muscle due to my- 
ofilament overlap, given in Fig. 2; 

f v(Lrn) is the force-velocity relation of muscle, an intrin- 
sic property of the crossbridges between the my- 
ofilaments that generate the active force as shown 
in Fig. 2; 

Lm(Ft, p) is the relative length of muscle fibers (and hence 
sarcomeres) which is determined once Ft and cp 
are given; 

a!(Ft, cp) is the pinnation angle of muscle w.r.t. the action 
line of Ft,  determined by Ft and cp; 

a( t )  is the mechanical activation level of musculoten- 
don actuator (after motoneuron commands have 
been transformed by the activation kinetics of the 
muscle fibers [see (lo)]). 

The dependence on F, and cp of Fp, L,, and a! is given by the 
following equations: 

Lt = Lts + In (kteFtlkt ,  + l ) l k t e  

COS a! = (Lp  - L,)/L, 

where ki's are spring constants and Lp is the musculotendon 
length defined earlier. 

Substituting L, into the tendon force-length relation gives 
the dynamics for the musculotendon actuator 

where Kt(Ft)  is the stiffness function of tendon tissues. 
This is a model which is computationally tractable yet in- 

cludes most known propeties of muscle. In reality, however, 
muscles are often completely relaxed, particularly during slow 
walking and standing. When a(t)  + 0, the aforementioned model 
is not defined. We have shown elsewhere that it is not always 
justifiable to ignore muscle mass [lo]. Hence, an obvious modi- 
fication to the model is to include the muscle mass. The corre- 
sponding dynamics are given directly by using Newton's laws 
for the musculotendon actuator shown in Fig. 2 as follows: 

This generates a two-state representation of the musculotendon 
actuator. This model can be considered as a general version of 
many currently available first-order models. For example, the 
first-order model given earlier can be derived from the model in 
(9) by applying the technique of singular perturbations, assum- 
ing muscle mass to be a small parameter. For detailed derivation 
and discussion, see [lo] and [37]. 

C. Activation Dynamics 

The activation dynamics describes the relation between the 
neural input to the musculotendon actuator and its mechanical 
activation. The most important characteristics to be included in 
the activation dynamics are the different time constants for 
activation and deactivation, the low-pass filter property, and the 
saturation of activation. The independence of activation dynam- 
ics from muscle contraction dynamics is also assumed [37], 
although this remains controversial [30]. 

A first-order nonlinear differential equation is used to describe 
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the dynamics of activation of the musculotendon actuator 

where u is the neural input (excitation), taken as the rectified 
smoothed electromyogram (EMG), c, + c2 is the activation rate 
constant (when u = I), and c2 is the deactivation rate constant 
(when u = 0). 

This activation dynamics has the following features. 
1) Mechanical activation (a(t)) follows excitation (u(t)) 

asymptotically, and is bounded within [0, 11. 
2) It has a larger rate constant for activation than deactivation, 

conforming with the experimental evidence that muscle force 
rises much faster than it decays. 

3) It is an analytical function suitable for feedback control 
analysis. 

D. Physiological Sensors 

The limb is equipped with thousands of proprioceptive sense 
organs whose transduction and encoding properties have been 
studied intensively. Major physiological sensors considered in 
our model include muscle receptors and joint receptors. We have 
considered only the most sensitive and fastest conducting signal 
sources, presuming these to be most useful for servoregulation. 

Among the muscle receptors we have modeled muscle spindle 
organs sensing muscle kinematics (length and rate of change in 
length), and Golgi tendon organs sensing muscle force. Spindles 
reside deep inside muscles and are parallel with the main muscle 
fibers, thereby experiencing the same stretch as the muscle 
fibers. There are direct control neurons (y motoneurons) inner- 
vating spindles, to modulate their sensitivity according to the 

~ anticipated range of motion. It is clear now that the outputs of 
spindles go not only to motoneuron pools controlling the same 
muscle, but also to those controlling other muscles, forming a 
complex feedback network [23]. The output signals of spindle 
organs correspond to a nonlinear function of muscle kinematics, 
i.e., they are sensitive to both muscle lengths and rate of change 

1 of length. Furthermore, the nature of this function can be 
changed dynamically by the y motoneurons (see [20] and [23]). 
Since our study is restricted to posture control during small 
perturbations, a linear combination of the two mechanical inputs 
(length and velocity) is a reasonable approximation of activity 
recorded from hindlimb spindles in naturally behaving animals 
[18], [21]. The effect of active modulation on spindle organs 
during standing is simulated by a scaling scheme that limits the 
range of spindle output within [0, 11: 

I; (s, x SL, + s2 x SL, = maximum of (SL, + SL,) 

s1 x SL, = 0.5 maximum of (SL, + SL,). 

(11) 
The sensitivity of tendon organs is not modulated. Their 

output signals represent simply tensions, influenced little by 
rates of change of tension. The discharge rate of tendon organs 
increases monotonically with tension in muscle, though not 
exactly linearly [23]. It is quite reasonable to assume a linear 
function for tendon output during standing posture. As for 
spindles, tendon organs are known to also have a widespread 
feedback projection through inhibitory interneurons. 

Fig. 3 shows a schematic diagram for some of the known 
feedback projections of the muscle receptors. For simplicity, 
only the connection between neurons of a pair of agonist and 
antagonist muscles at one joint are drawn, though the real 
projection pattern is much more diffuse [15], [25]. 

Reciprocal Control of Antagonist Muscle Pair 
COMMAND 

FLEXOR /i EXTENSOR 

Fig. 3. Classical view of physiological circuitry involved in feedback 
regulation of muscles acting across a single joint (adapted from [Z] and [17]). 
Large circles denote alpha motoneurons whose excitatory output (bar-shaped 
endings) caused the muscle to increase its stiffness (ratchet and spring 
mechanism) and activates the Renshaw cells (RC) which have inhibitory 
outputs (ball-shaped endings). Muscle length is sensed by spindles (parallel 
springs) whose primary output (Ia) excites both homonymous (synergist) 
motoneurons and an inhibitory neuron (IaIn) to the antagonist motoneurons. 
Muscle force is sensed by Golgi tendon organs (GTO) whose Ib fiber output 
excites an interneuron (Ibh) that inhibits the homonymous motoneurons. In 
reality, there are many more convergences on interneurons, including direct 
input from higher centers that command the motoneurons to increase or 
decrease muscle activation. 

Notice from the figure the connection of a special interneuron 
-the Renshaw cell (RC). It receives input from a collateral of 
the axon coming out of the motoneuron and feeds back the signal 
to both the original motoneuron and to other motoneurons. 
Neuroscientists have proposed several functions for RC [2]. We 
believe it is an estimator of muscle activation level, because of 
the signal it receives and its projection within the spinal cord. 
Since RC was never considered as a sensor before, no experi- 
mental data are available to relate the discharge rate of the 
neuron to motoneuron activity or muscle activation level. I 

I 

The functional role of joint receptors has been controversial i 
[5]. Intuitively, some sensors are needed to provide information b 

about joint angles and angular velocities. Joint receptors are 
natural candidates. However, many experiments indicate that 
signals from joint receptors occur predominantly at extreme or 
unusually loaded joint positions [24], leading to speculation that 
their role in locomotion is to signal readiness for the step phase 
transition [33]. Since many of those experiments were conducted 
on anaesthesized animals and results were obtained from some 
subset of all receptors on a joint, one cannot conclude that joint 
receptors are not used as joint sensors in a normal sense. We 
assume in our model the availability of joint angle and angular 
velocity information from joint receptors. We have also exam- 
ined the obsemability of the system without explicit joint recep- 
tors. The system is observable [lo] so it would be possible to 
incorporate an estimator for joint angle feedback, based on 
spindle and tendon organ signals. 

In summary, we have incorporated sensors based upon four 
known receptor modalities: joint receptors (y,(p, 4)) for joint 
angles and angular velocities; tendon organs (y2(Ft)) for force 
outputs; spindles (y,(L,, L,)) for a combination of muscle 
lengths and velocities; and Renshaw cells (y,(a)) for activation 
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levels in muscles. These provide for a full-state feedback scheme 
that can be used to model the feedback projection network 
residing in the spinal cord for the involuntary control of move- 
ment. An alternative to the full-state feedback scheme, incorpo- 
rating an observer to estimate joint angles and angular rates from 
signals from the other three sensor modalities, has also been 
developed (see [lo]). 

E. The Feedback Structure of the NMSCS 
In order to relate our results to the physiology, we chose 

system inputs to be the neural inputs to musculotendon actuators, 
and the outputs to be the outputs of the physiological sensors 
identified previously. A block diagram for the NMSCS dynamics 
is given in Fig. 4. The feedback pathways have been identified 
as Ia (muscle spindle primary endings) for muscle length and 
velocity, Ib (tendon organs) for muscle force, Rc (Renshaw 
cells) for activation level. Because of the uncertainty of joint 
receptor action in locomotion control, a switch is shown in the 
figure to indicate uncertainty whether a joint angle receptor or an 
estimator is used. 

For a standing posture, the system response to a small pertur- 
bation will be well represented by a linear system. The behavior 
of the spinal neural controller for involuntary action should also 
be close to linear. Under these assumptions, we linearized the 
system dynamics around a quiet standing posture where the 
nominal values for all parameters are available from experimen- 
tal measurement. Let 6 denote the variation of a variable from 
its nominal value. Then the system state.vector in the linearized 
system is given by x = (6p, 647, 6Ft, 6L,, 6a)'. The linearized 
system matrices are 

0 1 3 x 3  0 

a f ,  a f ,  a f l  - - -  
ax,  ax, ax, 
a f 2  a f 2  a f 2  - - -  
ax, ax, ax,  

a f 3  - a f 3  0 - 
ax, ax3 

Acllvatim Muecle 
Dynamlce Dynamics 

I 

Fig. 4. Block diagram of the neuromusculoskeletal system showing senso- 
rimotor feedback matrix K separated into terms related to state variables for 
muscle activation (assumed to be sensed by Renshaw cells Rc), muscle 
length and velocity (spindle Ia afferents) and force (Golgi tendon organ Ib 
afferents), and joint angle and velocity (either sensed by joint afferents or 
estimated from Ia and Ib signals). 

where f i  is 
its (8), f 3  
dynamics (I  
~ 3 3 x 3 6  

the skeletal dynamics (I), fi is the tendon dynarn- 
the muscle dynamics (9), and f4 the activation 

.O). Consequently, A E R ~ ~ ~ ~ ~ ,  B E R ~ ~ ~ ~ ~ ,  C E  

To find the linear feedback controller, we assumed a linear 
quadratic regulator. The performance index to be optimized has 
the form: 

This formulation provides us with two weighting matrices. In 
effect, at this point the problem is an inverse optimal control 
problem. Given that the control is linear state feedback, what are 
the Q and R for which this feedback is optimal? 

As an important principle of neuromuscular organization, 
each muscle fiber receives innervation from only one motoneu- 
ron, and one motoneuron can innervate many fibers of the same 
muscle [3], 1261. We have also assumed that muscle activation is 
independent of muscle contraction dynamics. Consequently, 
muscle excitations are independent of each other. Thus, R is 
assumed to be a diagonal matrix to reflect the independence of 
excitations for different muscles. Even though the weighting 
factor in R for each muscle can be different in accordance to its 
activity at a specific posture, to concentrate on the investigation 
of the effects of different assumptions about motor control 
strategy, we used the same weighting for all muscle excitations. 
Therefore, R is of the form rI. 

The choice of Q matrix is determined by the control strategy 
to be simulated. 

1) Under the "joint position servo" control strategy, what is 
to be minimized is the error in joint positions 

2) Under the "length servo" strategy, the controller should I 

regulate the system in such a way that muscle lengths are 
maintained at their desired values. Correspondingly 
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3) Under the "muscle stiffness" control strategy, proposed by 
Houk [13], the controller is to minimize any deviation of muscle 
stiffness from its nominal value. Since the stiffness of a muscle is 
defined as the ratio between the change in force and that in 
length, ( F ,  /L,), after linearization, we obtain the following: 

4) Under the "full-state feedback" control strategy, the con- 
troller will modulate, in balance, all the state variables to 
maintain a good performance 

In the previous section, we set up the model for the NMSCS, 
linearized it around a nominal standing posture, and formulated 
the optimization problem. The optimal control for the problem, 
as is well known, is the solution of the corresponding algebraic 
Riccati equation (ARE) [I] 

The Schur decomposition method [18] is used to find the posi- 
tive-definite solution of the ARE (it is easy to show that the 
system is controllable and observable). For each Q matrix listed 
in the previous section, the feedback gain matrix was calculated 
for several different values of r to see how the feedback pattern 
changes under different levels of control effort. 

The simulation results are compared to experimental measure- 
ments to test the various proposals for motor control strategy. 
The experimental data are from [32]. A cat standing with one 
foot on each of four movable force plates, has its posture 
perturbed by a sudden movement of one plate. The ground 
reaction forces were measured. 

Under full-state feedback and when r = 1.0, we obtained a 
ground reaction force response quite similar to the experimental 
measurement. The results are shown in Fig. 5. The left column 
shows the perturbation, the measured ground reaction forces, 
and the computed ground reaction forces. The right column 
shows the joint angle responses. The response of joint angles 
and muscle forces (Fig. 6) looks smooth and reasonable. 

Under the same control strategy but for different values of r, 
we obtained similar joint responses but ground reaction forces 
differed significantly. 

It is clear from Fig. 5 that both the shape and the time of the 
responses of the model match the experimental data reasonably 
well. We believe the differences are easily explained. Rushmer 
et al. [32] claim that the doubly humped shear reaction force is 
primarily due to the inertial response to the perturbation. This 
seems reasonable. The model response is quantitatively different 
because the model perturbation is exponential while the experi- 
mental perturbation was closer to a constant velocity, starting 
and ending at the negative peaks in the experimental shear 
reaction force. 

In both the real cat and the model the vertical reaction force is 
kept close to its initial value for a remarkably long time. We 
believe the cat is able to maintain this value longer than our 
model by using its other three legs. Similarly, the cat seems to 

SIMULATION RESULT 

Passive perturbation Hip Angle Response 

Shear Reaction Force Knee Angle Response 
.369& N 

.09 123.6 

(c) (dl 

Vertical Reaction Force Ankle Angle Response 

6.17 106.6 

(e) - 1.0 sec 

(f) 
Fig. 5. (a) Simulated response of model system to a small forward pertur- 
bation of foot position which produces a small decrease in hip angle that 
persists in the absence of sensory feedback and (b) is corrected over 1 s as a 
result of feedback through a matrix that has been optimized for full-state 
feedback with intermediate level of stiffness; (d) and (f) active corrections at 
other joints. (c) and (e) Ground reaction forces are compared for simulated 
response (thin traces) and measured response (thick trace; data traced from 
1321). 

.26 
BASM 

S ART 

.03 r 

.14 GAST 
PTF 

r 

.09 L 0 

SOL 

.45 r 
FHL 

.I4 1 - 
1.0 sec. 

Fig. 6. Simulated response of muscle groups, same perturbation and 
feedback matrix as in Fig. 5, showing changes in activation (ordinate) over 1 
S. 

move to a final posture that is slightly different from its initial 
posture. We do not allow our model to do this although such a 
change, as a command from a higher neuronal control center 
(brain or spinal cord), is included in our overall picture of neural 
control. 

Under the other control strategies, however, we either got 
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MUSCLE GROUPS 

PTF FLFH SOL GAST VAST BPST RF SART BASM IP 

pTFb- t -  k k F l - k k k k  

Fig. 7.  Portion of feedback matrix K for Golgi tendon organs from all 10 
muscle groups (labels on left) onto their controllers (labels at top). Each 
graph (key upper right) indicates the sign and relative magnitude of feedback 
gain (ordinate: positive up, pseudologarithmic scale; see text) for a range of 
performance criteria obtained by varying R/Q ratio (abscissa: log scale from 
0.001 to 4000) with full-state feedback. 

large force excursions (joint position and length servo control), 
or large joint angle overshoots (muscle stiffness control). This is 
evidence that these are not realistic motor control strategies. 

These simulations suggest that full state-feedback control might 
be the motor control strategy used by the NMSCS. The corre- 
sponding feedback gain matrix is plotted separately in Fig. 7 for 
tendon organ feedback projections and in Fig. 8 for spindle 
organ feedback projections, respectively. Feedback gains for 
Renshaw cells and joint receptors are not shown here because of 
the lack of experimental data to give a meaningful discussion. 

In Figs. 7 and 8, each small graph represents the feedback 
gain from one sensor to the control input of one musculotendon 
actuator as a function of r. The graphs are arranged in columns, 
according to the neural control input of one musculotendon 
actuator from all receptors, and in rows, according to the 
projections of the sensory feedback from one musculotendon 
actuator to neural control inputs of all actuators. 

One pattern that can be immediately recognized from these 
feedback matrices consists of large excitatory actions (positive 
feedback) of spindle organs and large inhibitory actions (nega- 
tive feedback) of tendon organs, on the diagonal elements. These 
represent the homonymous feedback, of sensors onto the actua- 
tors of the same muscles. The signs of these diagonal elements 
are invariant when r changes, while many heteronymous feed- 
backs (referring to actions and connections between different 
muscles) change sign. The pattern from those homonymous 
feedbacks is consistent with what neurophysiologists have al- 
ready discovered in experiments. It is this kind of homonymous 
feedback pattern, and a disregard of the generally smaller het- 
eronymous feedbacks, that prompted proposals for servo control 
of individual muscles, such as the length servo and muscle 
stiffness servo. However, there are many heteronymous feed- 
back actions on each muscle, which are not negligible especially 

when r is large. The simulation suggests that r = 1.0 is about 
the level of control for the NMSCS at standing posture. Around 
r = 1.0, the homonymous actions are still larger than any 
heteronymous action in all muscles, but the combined effect of 
the many heteronymous actions on each muscle may be as large 
or larger. 

There are a few exceptions to the homonymous inhibitory 
action of tendon organs. In Fig. 7, showing tendon organ 
feedback connections, we can see sign reversals from the 
homonymous feedback of BPST and PTF. PTF is the major 
flexor of the ankle joint, while BPST is both a hip extensor and 
knee flexor. Both muscle groups are silent during quiet standing 
but the hip flexor RF (which is also a knee extensor) is active. 
Therefore, the positive force feedback from these two muscle 
groups might have the effect of increasing the whole limb 
stiffness in response to the perturbation by temporary cocontrac- 
tion of both extensors and flexors. These sign reversals of 
homonymous feedback from BPST and PTF might also have a 
compensating action for the strong inhibitory feedback of Ren- 
shaw cells (not shown) and excitatory action of spindles (Fig. 8) 
from the same muscles. For MIMO systems, feedback actions 
are much more complicated, and are no longer as intuitive as 
they are for SISO systems. 

Although heteronymous feedback gains are smaller than 
homonymous feedback gains, a diffuse feedback projection pat- 
tern is generally evident in the feedback matrices. There are 
feedback connections not only among muscles acting on the 
same joint, but also acting on different joints. These connections 
to muscles controlling other joints have a general pattern. The 
three uniarticular extensors in the model attach to the limb on 
alternate sides: ankle extensors (soleus) on the posterior, knee 
extensors (vasti) on the anterior, and biceps on the posterior of 
the limb (see Fig. 9). Therefore, the feedback interconnections 
of the 3 musculotendon actuators also take alternate signs: 
negative on the ankle, positive on the knee, then negative on the 
hip. The cat hindlimb is a mechanically coupled multilinkage 
system with multiarticular musculotendon actuators. We might 
expect its controller to have comparably distributed structure. 

How much is this feedback pattern dependent on the choice of 
coordinate system used in the model? Let H be a nonsingular 
transformation matrix relating the new system states z with x.  
Then we have 

It is easy to show that the relation between the solution of the 
algebraic Riccati equation under the two coordinate systems is 

From the aforementioned relations, we get 

Hence, the choice of the system states in the model is important 
to the generation of the aforementioned feedback patterns, though 
the control effect will be the same because the optimal control 
will be 

The lesson is that a further aspect to the use of the LQR to 
model the neurophysiological regulation of posture is the need to 
infer the appropriate choice of state variables. Fortunately, the 
well-defined modalities of the naturally occurring sensors corre- 
spond well to the natural state variables of a Newtonian model. 
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MUSCLE GROUPS 

PTF FLFH SOL GAST VAST BPST RF SART BASM IP 

PTFl- b  k I=- I--I-- - t 

v, 

RFt t-t t b k t - E l -  

BAsMt k t -  t b F F t  

Fig. 8. Portion of feedback matrix K for spindle primary afferents, 
arranged as in Fig. 7.  

Fig. 9. (a) Anatomical arrangement of monoarticular extensor muscles E 
of hip h ,  knee k and ankle a. (b) Corresponding patterns of sensory 
feedback predicted by optimal regulator design, in which any nominal 
pattern of homonymous feedback (bar endings looping back onto self) tends 
to have the reversed sign on muscles operating across the adjacent joint (ball 
endings) and the same sign for muscles two joints away (bar endings 
between E, and Eh). 

Because the form of our model retains the essential structure and 
important physiological properties of the NMSCS, we are able 
to make some reasonable predictions about neural interconnec- 
tions of sensory feedback pathways. 

However, the neural circuits in the spinal cord are probably 
much more complex than even those predicted by our LQ 
control model. After all, we are only describing one specific 
function of a system with many behaviors. There are many 
parallel interneuronal systems residing in various reflex path- 
ways, with different latencies. There are additional receptor 
modalities to those considered in the present model. By using 
techniques such as neuron staining, microelectrode implantation, 
and intracellular recording, neurophysiologists have identified 
extensive heteronymous interconnections and some interneuronal 
systems in the spinal cord [14], [25]. Because cats are often 
anaesthesized in such acute experiments, the state of the spinal 

cord is not known, and there is evidence that the transmission in 
many such circuits is modulated throughout the different phases 
of the walking-step cycle. Moreover, because of methodological 
limitations those acute experiments reveal only the short latency 
reflex pathways involving one or two interneurons. It is the sum 
of all contributions from the several parallel interneuronal sys- 
tems that would generate the net projection strengths that are 
predicted by this model. 

The absolute values of feedback gains depend on the metric 
used in the model, so we have avoided any interpretation of 
those values. However, the relative magnitudes of the feedback 
gains in the matrix constitute important tests of the model's 
predictions regarding neural connections. If the model prediction 
is valid, wherever the model predicts small gains there may or 
may not be a connection; even a strong connection is not a 
contradiction to our model because the connection might exist, 
and be used, for an entirely different behavior. If the model 
predicts a large gain, then there needs to be a strong feedback 
connection with the appropriate sign to verify our model. The 
largest gains, which are predicted for homonymous feedback, 
have long been experimentally established as existing connec- 
tions in the spinal neural network (Fig. 3), but their relative 
functional importance during natural motor behaviors remains 
the subject of study and debate. 

The model predicts some reversals in the sign of heterony- 
mous feedback gains, as the ratio of R and Q varies over the 
range from one extreme to the other. Changes of feedback sign 
have been observed during the various phases of locomotion in 
animal experiments [6] and [28]. This suggests, in terms of our 
model, that the control str~tegy may change as a function of 
ongoing motor activity, perhaps as a result of changes in perfor- 
mance criteria, activation state, posture or external constraints 
(e.g., foot in the air versus on the ground). 

VI. FUTURE RESEARCH 

Since out model contains only one leg of a quadrupedal cat 
and the motion is restricted to the saggital plane, it is difficult to 
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TABLE I 
SKELETAL SEGMENT DATA, DETERMINED ON FROZEN TRANSECTED LIMB 
SEGMENTS. ABBREVIATIONS: S-SEGMENT LENGTH (JOINT-CENTER TO 

JOINT-CENTER); m-SEGMENT MASS (INCLUDING SOFT TISSUE); 
C-DISTANCE OF CENTER OF MASS FROM THE DISTAL JOINT-CENTER; 

I-ROTATIONAL MOMENT OF INERTIA (DETERMINED BY 
PENDULAR OSCILLATION) 

Seement S m C I 

(cm) (grams) (cm) (g cm2) 
Thigh 9.6 234.0 5.7 5353.7 
Shank 9.4 54.8 4.4 435.4 
Foot 6.9 29.1 3.9 118.5 

TABLE 11 
MUSCLE NAMES, JOINT A c n o ~ s ,  AND ATTACHMENT PARAMETERS. ABBREVIATION: H: HIP; K: KNEE; A: ANKLE; 

E: EXTENSION; F: FLEXION; 0 1 ,  02 :  RANGE OF PROXIMAL ATTACHMENT POINTS; I l , I 2 :  DISTAL ATTACHMENT RANGE. 
0 AND I ARE REPRESENTED AS PERCENTAGE OF THE SEGMENT LENGTH, MEASURED AWAY FROM THE JOINT ACROSS 

WHICH THE MUSCLE OPERATES 

Muscle Joint Action 01 02 I1 I2 
Name H K E % % % % 

Soleus (SOL) 
Plantaris (PLA) 

Lateral Gastracnemius (LG) 
Medial Gastracnemius (MG) 

Biceps Posterior (BFP) 
Semitendinosus (ST) 

Gracilis (GRA) 
Tenuissimus (TS) 

Vastus Intermedius (VI) 
Vastus Medialis (VM) 
Vastus Longus (VL) 

Biceps Anterior (BFA) 
Semimembranosus Longus (SMP) 

Semimembranosus Brevis (SMA) 
Adductor Femoris (AF) 
Caudo Femoralis (CF) 
Quado Femoralis (QF) 

Tensor Fascia Latae Posterior (TFP) 
Rectus Femoris (RF) 

Tensor Fascia Latae Anterior (TFA) 
Sartorius Anterior (SAA) 

lliopsoas UP) 
Sartorius Medial (SAM) 
Tibialis Anterior (TA) 

Extensor Digitorum Longus (EDL) 
Peroneus Longus (PL) 
Tibialis Posterior (TP) 
Peroneus Brevis (PB) 

Flexor Digitorum Longus (FDL) 
Flexor Hallucis Longus (FHL) 

make direct comparisons with experimental data other than the 
ground reaction forces. One obvious improvement is to general- 
ize the model into 3-D space and include more legs. Then the 
model becomes more complex but more realistic simulation can 
be performed so that much more experimental data can be used 
to test the model. 

The study of the neural control of walking and running will be 
more challenging because the dynamical effects become more 
important in the system behavior. How the neural controller 
modifies feedback gains to facilitate transitions between different 
phases of locomotion will be an interesting problem that can be 
addressed by the approach used here. 

Even in the current model, there are still many remaining 
questions to be answered. The role of joint receptors can be 
investigated by comparing the patterns of feedback with them or 
with an estimator for these state variables. Muscle synergy is 
another issue that can be studied. We have changed Q to test 

assumptions about motor control strategy. R and Q can also be 
changed so as to emphasize coordination within selected sub- 
groups of muscles, perhaps incorporating some known features 
of spinal feedback circuits to determine the relative strength of 
the "missing," unknown parts of the control system needed to 
achieve stability. 

In summary, the model developed here and the formulation 
used in its analysis provided us with a tool to study the general 
structure of the neural control network of the NMSCS. Some 
experimentally testable predictions were generated and several 
proposals for motor control strategy were examined. This form 
of analysis promises to reveal much about the relationship 
between the neural control circuitry and the musculotendon 
mechanics. 

Please note that we are not claiming that the spinal cord 
functions as an LQ controller. We are using LQ theory as a tool 
to study the spinal cord and its relation to the limb. We have 
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TABLE III 
MUSCLE PARAMETERS AND GROUPINGS. ABBREVIATION: PCA: PHYSIOLOGICAL CROSS SECTIONAL AREA; a :  MUSCLE FIBER 
RNNATION ANGLE; Lp: PATHLENGTH (FROM ORIGIN TO INSERTION, INCLUDING TENDON); Lm: MUSCLE FASCICLE LENGTH; 

EMG: ELECTROMYOGRAM; POE: PEAK OF MUSCLE EXCITATION SEEN IN MAXIMAL EXERTIONS SUCH AS JUMPING 
AND PAW SHAKING 

Group Muscle Group PC A CY L~ L m Mass EMG 
Number Name Name Number cm2 deg cm cm g %POE 

1 SOL 

2 GAST 

3 BPST 

4 VAST 

5 BASM 

7IF' 
8 SART 
9 PTF 

10 FLFH 

SOL 
PLA 
LG 
MG 
BFP 
ST 

GRA 
TS 
VI 

VM 
VL 

BFA 
SMA 
SMP 
AF 
CF 
QF 

TFP 
RF 

TFA 
SAA 
IP 

SAM 
T A 

EDL 
PL 
TP 
PB 

FDL 
FHL 

used the theory to create a family of models which predict the 
kinds of feedback that should occur in the spinal cord under 
precisely stated assumptions. 

Tables I, 11, and III provide the parametric data for the 
musculoskeletal model of the cat.hindlimb that was used in the 
optimal regulator design and simulations of responses to pertur- 
bations. These values are a composite of many different speci- 
mens used for both morphometric and electromyographical stud- 
ies. They provide an approximate two-dimensional representa- 
tion of the state of the system during quiet standing. The optimal 
regulator designs appear to be relatively robust in the face of 
small changes in these parameters; systematic sensitivity analysis 
would shed light on the inherent stability of the system and 
remains to be done. 
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