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Abstract Successful performance of a sensorimotor task
arises from the interaction of descending commands
from the brain with the intrinsic properties of the lower
levels of the sensorimotor system, including the dynamic
mechanical properties of muscle, the natural coordinates
of somatosensory receptors, the interneuronal circuitry
of the spinal cord, and computational noise in these ele-
ments. Engineering models of biological motor control
often oversimplify or even ignore these lower levels be-
cause they appear to complicate an aready difficult
problem. We modeled three highly simplified control
systems that reflect the essential attributes of the lower
levelsin three tasks: acquiring atarget in the face of ran-
dom torque-pulse perturbations, optimizing fusimotor
gain for the same perturbations, and minimizing postural
error versus energy consumption during low- versus
high-frequency perturbations. The emergent properties
of the lower levels maintained stability in the face of
feedback delays, resolved redundancy in over-complete
systems, and helped to estimate loads and respond to
perturbations. We suggest a genera hierarchical ap-
proach to modeling sensorimotor systems, which better
reflects the real control problem faced by the brain, as a
first step toward identifying the actual neurocomputa
tional steps and their anatomical partitioning in the brain.

Key words Motor control - Modeling - Spinal cord -
Muscles - Muscle spindles - Reflexes - Neural networks

Introduction

Theories of sensorimotor control based on engineering
control theory usually break a problem into a series of
transformations (e.g., coordinate transformations, inverse
kinematics, inverse dynamics, etc.). In order to apply
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such theories to living organisms, it is necessary to iden-
tify the locus of each of these transformations and the
nature of the computational machinery that performs
them. This has proven to be difficult (Imamizu et al.
1995). In this paper, we explore the types of behavior
and control strategies that emerge in model systems
whose components have biologically relevant input-out-
put relationships and connectivity:

1. Biological muscles differ from robotic torque motors
in that they produce large, instantaneous changes in
output force when kinematic conditions change (re-
cently modeled by Brown et a. 1996), but respond
only sluggishly when neural activation changes.

2. Biologica feedback circuits differ from robotic servo-
controllers in that they have few “private-line” paths
whereby command or feedback signals can be routed
selectively to individual actuators. Instead, the signals
from large numbers of noisy sensors of diverse physi-
cal variables converge with the signals from many
command centers before they are routed to motoneu-
rons.

3. Biological performance differs from that of industrial
robots in that animals usually find it more valuable to
perform suboptimally, but adequately in the widest
possible range of circumstances rather than to per-
form optimally, but only for nominal conditions.

The above three attributes can each be associated with
one level of an essentially hierarchical system, with the
muscul oskeletal plant itself at the bottom, the spinal cord
in the middle, and the brain at the top. Researchers tend
to confine themselves to one or the other of these sub-
systems of components and behaviors. Those who study
the “adaptive circuitry” at the top usually assume that it
bypasses the fixed circuitry of the spinal cord to take di-
rect control of the muscles required to perform learned
tasks (Fetz and Shupe 1990). Modellers of control sys-
tems often pay little attention to the properties of the
sensors and actuators actually available, assuming that
these should and can be converted to simple state vari-
ables, such as end-effector position, joint angles, veloci-
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ty, and force by computational processes known as coor-
dinate transformations (Soechting and Flanders 1992).

This article considers some of the functional relation-
ships that might be expected among the brain, spinal
cord, and sensorimotor apparatus as a conseguence of
the known structure, function, and phylogeny of each.
Because these levels must work synergistically in the
performance of most behaviors, a knowledge of the
strengths and limitations of each level should facilitate
the schematization of the overall problem of sensorimo-
tor control into a set of modules that have some likeli-
hood of one-to-one correspondence with actual biologi-
cal structures. Such knowledge is also necessary for the
interpretation of experimental data, which usualy in-
volves inferences about how activity in one structure
contributes to the observed behavior based on assump-
tions about signals and variables that cannot be recorded
directly. Previous modeling work has focused on devel-
oping realistic models of complete neuromuscul oskel etal
systems (e.g. He et al. 1991; Bullock and Grossberg
1992), but it is difficult to appreciate the relative contri-
butions of individual elements and connections in their
myriad details. The present work explores the surprising-
ly sophisticated emergent properties that arise even in
extremely simple models when they incorporate realistic
operating conditions and hierarchical structure.

Principles
The value of hierarchical structure

Hierarchical models of nervous-system function have lost
favor as new methods for tracing circuitry and mapping
functional activity have revealed widespread ascending,
descending, and recurrent loops involving most areas of
the brain. For the cognitive systems that provide most of
these data, strictly hierarchical processing is undesirable
because it would decrease the ability of the brain to inter-
pret complex situations involving contextua clues. Motor
systems, however, are judged at least as much on speed as
on accuracy. They must delegate at least a portion of the
decision-making to lower centers, much as a modern army
distributes standing orders and contingency plans to front-
line units that first encounter situations in which an imme-
diate response is imperative. These units lack the overall
contextual information required to reformulate objectives
or strategies, but they can interpret incoming data and exe-
cute tactical responses according to their standing orders.
Obvioudly, the higher command centers must anticipate
the actions of the front-line units, must be able to develop
and transmit new standing orders to fit each new situation,
and must be able to countermand old standing orders
when they appear to be missing the objective.

The main divisions of the hierarchy

This study considers three levels of the sensorimotor hi-
erarchy and the nature of the information transmitted be-

tween them. At the bottom is the musculoskeletal plant
itself, whose many sensors and actuators have complex
intrinsic properties, which are determined both by their
physical form and by their postural deployment and acti-
vation by the central nervous system. The next level is
the spina cord, a primitive, but powerful machine for
rapid tactical responses to a wide range of inputs. These
first two are the “lower levels’ that are the main subject
of this paper. At the top is the brain, which we have sub-
divided loosely into two subcomponents for posing ob-
jectives and developing strategy. We have not attempted
to identify these functional subdivisions with anatomical
subdivisions of brain motor function (e.g., cerebral cor-
tex, cerebellum, basal ganglia). Such putative assign-
ments and further subdivisions of motor planning depend
upon explicit or implicit assumptions about the properties
and capabilities of the lower levels of such a hierarchy.

Therole of perturbations

Every motor task has associated with it a particular set of
perturbations, which may be external and/or internal to
the organism. External mechanical perturbations may be
applied explicitly by an investigator or they may be asso-
ciated implicitly with external objects and circumstances
that are part of the task. Even without overt mechanical
perturbations, internal perturbations arise inevitably
from noise in the neural processes of initiating all-or-
none action potentials and integrating them asynchro-
nously and often nonlinearly, for example from sensors
(Stein 1965; Loeb and Marks 1985), in motoneurons
(Matthews 1996), and in the movement-planning centers
themselves (Bullock and Contreras-Vidal 1993). The
probability of these perturbations influences the tactics
that an adaptive controller such as the brain adopts. In
the absence of perturbations, many different sets of tac-
tics may be functionally equivalent, a problem that mo-
tor psychologists describe as motor redundancy or over-
completeness (Bernstein 1967). Theoreticians attempt to
deal with this problem by “optimizing” control strategies
for global performance criteria, which are defined not by
the task, but instead are assumed to be fixed for the or-
ganism, such as minimizing energy consumption or me-
chanical stress on joints (Davy and Audu 1987; Collins
1995). In our models, external perturbations and internal
computational noise provide a means for distinguishing
and selecting between otherwise equivalent strategies on
the basis of the explicit performance criteria for the task
itself (Brown and Loeb 1999).

The use of intrinsic coordinate representations

Theories of motor planning from a “top-down” perspec-
tive usualy employ an orthogonal coordinate frame in
which to represent the goals of the task, typically in Carte-
sian coordinates with the origin at a particular body part,
such as the eyes, head, trunk, or shoulder (Buneo et al.



1995; Soechting and Flanders 1992). Much of the motor-
planning task then consists of transforming the desired tra-
jectory from this coordinate frame into the non-orthogonal
coordinate frame of individual muscles, usualy through
an intermediate coordinate frame of joint angles (Holler-
bach and Atkeson 1987). Somatosensory information is
required to define the starting posture of the body and to
monitor the progress of the task in order to generate cor-
rections to the concurrent or future instances of the task.
Much of this information is derived from proprioceptors
operating in the intrinsic coordinates of the muscles in
which they reside. The remainder derives from cutaneous
receptors, whose location in Cartesion extrapersonal space
depends on limb posture, as determined from propriocep-
tive information. If motor planning is, in fact, conducted
in an orthogonal coordinate frame, then there must be an
inverse transformation to convert non-orthogonal somato-
sensory information into a compatible coordinate frame
for feedback control and evaluation of performance (Pel-
lionisz 1986; Scott and Loeb 1994).

In our model systems, we have only used the natural
coordinate system that arises from the set of sensory re-
ceptors themselves. For simplicity, we have identified
them with simple physical variables such as length, ve-
locity, and force; what is important is that they sense at
the level of the muscle rather than in exteroceptive coor-
dinates, such as the end-point of the limb. This sensory
coordinate frame is used by our model brain not only for
feedback control, but also to specify motor tasks, to
identify loads, and to evaluate and adapt control strate-
gies. MacKay (1982) and Burgess (1992) advocated, but
did not develop a similar notion of “sensory templates”
in motor planning.

Descending information is substantially transformed
by the spinal cord through its interneurons, which re-

Fig. 1 Hierarchical model
system shown in general math-
ematical form (left), together
with atable of symbolsused in
this article, and a simplified
example used for model 1
(right), whose performance is
giveninFigs. 2, 3,4

AL* = change to estimated load

W = weighting factor
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ceive most of the descending information, combine it
with segmental afferent feedback, and direct it to diver-
gent motor nuclei (Lundberg et al. 1987; Schomburg
1990; Jankowska 1992). There is little evidence, howev-
er, that this constitutes a general transformation from an
orthogonal coordinate frame (such as end-point position,
movement vectors, or joint angles) into the intrinsic co-
ordinates of the muscle. It seems more likely that these
interneurons reflect the control requirements of primitive
behaviors (e.g., postural stability, locomotion, escape)
that evolved long before brains began formulating de-
tailed strategies for limb movements (Loeb et al. 1989,
1990). The various types of interneurons that occur in
the spinal cord define another important and inherently
non-orthogonal intrinsic coordinate frame upon which
the brain must operate.

Model system

In order to reveal general emergent properties of the hi-
erarchy, we devised model systems with the fewest num-
bers of elements that were capable of expressing these
properties. This permitted us to explore fully the effects
of varying key elements and their parameters and to
view graphically the entire performance space of control
systems during various tasks. The general design of the
model is shown in Fig. 1 in both mathematical and sche-
matic forms. Wherever possible, mechanical parameters
were normalized to physiological constants (e.g., mus-
cle-fiber length, maximal isometric force) or dimension-
less values in the range +1; neural signals were treated as
continuous and were combined linearly. The kinetic
components of the system were modeled in the Working
Model software environment (Knowledge Revolution,

* = expected sensory feedback

E = error feedback to neural network

C = command signal

K4 = linear control component
K, = threshold reflex gain

U = nominal net motoneuronal activity
AU = reflex responses in motoneurons

Z = mechanical impedance
M = musculoskeletal intrinsic properties
L = nominal load (internal plus external)

S = nominal sensory feedback
AS = sensory response to perturbation

AL = consistent load change
& = random mechanical inputs
& computational noise

penurbaﬁons]?és'i—w

Perturbations
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San Mateo, Calif., USA), which was dynamically linked
to control models implemented in MATLAB (Math
Works Inc., Natick, Mass., USA). The equations and pa-
rameters are provided in the Appendix, with a link to a
downloadable version of a general muscle model.

Muscul oskeletal plant

The models described in this article had only asingle de-
gree of freedom operated by one or two muscles. Each
muscle was controlled by a single apha motoneuron,
whose level of excitation (U) could vary from O to 1. Im-
portantly, the force-generating properties of the muscle
were designed to be physiologically realistic (see Appen-
dix), including a low-pass filter for electromechanical
activation delay (approximately 80 ms time-constant),
nonlinear force-length and force-velocity relationships
(Fig. A1, adapted from Brown et al. 1996), and internal
mass (required for computational stability when operat-
ing against springlike loads; He et al. 1991). The muscle
had maximal isometric force-generating ability (Fy) at
the starting length of L,. Each muscle was equipped with
two or three sensors (set S), corresponding approximate-
ly to the physiological Golgi tendon organ (sensor of
stress between muscle and load, F), muscle-spindle sec-
ondary ending (sensor of muscle length, x), and muscle-
spindle primary ending (sensor of muscle velocity,
dx/dt). Various perturbations (J) could be added to the
load during the performance of a task. The response to
these perturbations (AS) depended on the effective im-
pedance (Z) presented by the load plus intrinsic muscle
properties, which in turn depended on the activation lev-
el and the force-length and force-velocity properties of
the muscle(s).

Programmable regulator

The model of the spinal cord consisted of two or three
interneurons (11, 12,...), each of whose output depended
on the product of a corresponding command signal from
the brain (C1, C2,...) times the sum of two of the sensor
signals. This was intended to simulate the multimodal
nature of afferent input to most known spinal interneu-
rons and their biasing by descending projections from
higher control systems (Lundberg et al. 1987; Schom-
burg 1990; Jankowska 1992). The outputs from two in-
terneurons were summed by the alpha motoneuron to
generate the extrafusal component of U; in the model
with fusimotor control, only one of the interneurons con-
trolled the gamma motoneuron. In the models presented
here, the interneurons operated linearly (no threshold or
rectification) to modulate both the nominal motor pro-
gram U and the reflex responses (AU) in response to the
ongoing sensory input (S+AS). In model 1 illustrated in
Fig. 1, one interneuron (I1) received excitatory input
from the length sensor and inhibitory input from the
force sensor, similar to the Ib inhibitory interneuron

(Jankowska and McCrea 1983; Jankowska 1992). This
pattern of feedback has been called “ stiffness regul ation”
(Houk 1979). The second interneuron (12) received exci-
tatory inputs from both the velocity and length sensors, a
pattern of feedback similar to that described for the com-
bined effects of spindle primary and secondary afferents
(Marque et al. 1996). (There is no explicit representation
of the la monosynaptic projection because its gating by
presynaptic inhibition makes this pathway functionally
equivalent to the interneuronal representation used here.)
Such sets of multimodal feedback gains are called pro-
grammable regulators in engineering control theory,
where they are used for multi-input-multi-output systems
that need to be optimized for different performance crite-
ria at different times (Athans and Falb 1969; Loeb et al.
1990; Mclntyre et al. 1996).

Adaptive controller

The control signals that accomplish a given task must be
learned by the adaptive controller using a process of trial
and error. In the nervous system, this is presumably car-
ried out by a neural network, employing a process akin
to gradient descent (Burnod et al. 1992). Our models
were deliberately restricted to only two command sig-
nals, so that we could graphically represent the entire
space of all possible outputs from the controller to the
spinal cord and identify globally optimal control strate-
gies. More redistic systems would have many more sen-
sors and interneurons with more complex properties and
connectivity, which would likely give rise to multiple lo-
cal minima.

We specified the task in the same coordinates used to
evaluate the performance of the task, namely the intrin-
sic set of sensory signals (S) available from the musculo-
skeletal plant. Performance was judged according to the
distance of the target state (S*) from the actua state
(S+A9) at the specified time, with equal weighting (W)
of the errors in all of the intrinsic sensory coordinates.
Perturbations consisted of various forces applied at vari-
ous times during the movement. Performance was
judged according to the mean error achieved over al of
the predetermined perturbation conditions; note log plots
of error used throughout.

Task planner and load estimator

The adaptive controller must be assigned a goal that is
achievable. For a given load, only certain conditions in
multidimensional space S are possible. The coordinates
of space Sare the state variables of the system, which we
constrain to be identical to whatever sensors are avail-
able in the model system. For the first two muscul oskel-
etal systems explored here, these possible conditions lie
on a curved surface in a three-dimensional space, depict-
ed in Fig. 2A by the shaded surface. Thus, this surface
(L*) is essentially a model of this load (L), which con-
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two strategies compared in Fig. 4. C, D Similar error plots for an
average of 12 different perturbation conditions tested for each
control setting
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sists of aparallel, nonlinear spring and dashpot with zero
inertia. Changes in command signals produce trajectories
of movement on this state surface. For a different load
condition or during a perturbation, the trgjectory must lie
on a different surface. The grid in Fig. 2A shows a new
surface that results when a constant force is added to the
musculoskeletal plant, such as might be applied by a
constant-tension spring or a torque pulse in a typical ex-
periment on load-compensating ability. As discussed be-
low, persistent deviations between the target St and the
sensory feedback S actually received indicate that the tar-
get S does not lie on surface L. Because the coordinate
frame for the internal representation of load (L*) is the
same as that for sensory feeback (S), the deviation infor-
mation can be used directly by the Task Planner to modi-
fy thisinternal representation according to AL* =S-S*.

Model results
Exploring the control space for aballistic task (model 1)

The system started at rest with C1=C2=0, which results
in U=0 with the muscle lying at length L, where F=0
(this condition corresponds to an uncontrolled extreme
position in this unbalanced, single-muscle system). The
Target was a particular combination of length and veloci-
ty to be reached 0.5 s after start, somewhat akin to hitting
a baseball. All possible combinations of step changes to
commands C1 and C2 were tested over the range 0-1 in

Flg 4 A The traj ectories (on A —— perturbed trajectory for best overall strategy C
the load surface) for the best - =~ unperturbed trajectory
overall strategy (identified in 0.3

Fig. 3B, D), shown without
and with a 50-ms-long pertur-
bation consisting of +0.2 F, at
0.3 sinto the trgjectory (ar-
rows denote vertical shifts be-
tween the two surfaces, defin-
ing the nominal and perturbed
systems, as shown in Fig. 2A).
B Kinetics [motoneuron exci-
tation (u), muscle activation
(act), and force] and kinemat-
ics [velocity (vel) and position

Length (Ly)

increments of 0.1 for each. This resulted in the family of
0.5 s duration trajectories in sensory state space shown in
Fig. 2B. The root-mean-sguare distance in the state-space
(force, length, velocity) from the target to the end-point
of each trgjectory was plotted as a function of the C1 and
C2 inputs producing that trajectory (Fig. 3A, B). A subset
of command strategies (C1+C2=0.7 or 0.8) produced es-
sentially equally good results (the fluctuations in the min-
ima seen in the sideways detailed view of Fig. 3B reflect
the coarse grain of the C values actualy tested rather than
any trend, as shown by inset of Fig. 2B).

It is important to note that the nominal muscle activa-
tion U produced by these various control programs is
time-varying in a different way for each program. Thisis
because U is determined not just by constant input C to
each interneuron during the movement, but also by the
ongoing, time-varying sensory feedback Sto these inter-
neurons. As can be seen in Fig. 4B and D, the nomina
tragjectory (before the perturbation) associated with the
“best overall strategy” produced a lower initial activation
of the muscle than another “high-stiffness strategy” with
similar results, but these became more similar as the ef-
fects of sensory feedback during the movement counter-
acted the continuing differencesin command signals C.

Dealing with random force-pul se perturbations (model 1)

In order to differentiate the effectiveness of the subset of
control settings that performed equally well in the nomi-

—— perturbed trajectory for high stiffness strategy
——- unperturbed trajectory

(pos)] versus time for the best Length (Lo)
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nal condition, we simulated their behavior when the task
was performed in the presence of brief (50 ms duration)
force perturbations that varied in direction and magni-
tude (0.1 and +0.2 Fy) and time (0.1, 0.2 or 0.3 s after
onset of control program). Under these conditions, there
was a clear trend (Fig. 3C, D) toward better performance
for strategies that used a relatively high value for C2
(spindle-like excitatory feedback of length and velocity)
and low values for C1 (stiffness servo with excitatory
length and inhibitory force feedback). Examples of these
strategies with and without a sample perturbation are
shown in Fig. 4. The best overall strategy responded to
the stretch produced by the positive force pulse with a
net excitatory reflex that tended to stabilize the desired
trajectory. The high stiffness strategy produced a net in-
hibitory reflex as a result of the force-feedback, which
increased the overall error. The apparent redundancy of
control strategies with equally good performance in the
unperturbed state could be resolved into a single optimal
strategy when the task was performed under conditions
that included a set of randomly presented perturbations.
We expect, but have not explicitly tested that the applica-
tion of perturbations of position rather than force would
favor the high stiffness strategy because the inhibitory
force feedback would then reduce the error in the force
dimension.

Fusimotor control (model 2)

A second version of the model was created to examine
the effects of fusimotor gain y on the velocity sensor.
The underlying hypothesis was that the inclusion of
noise and perturbations in the model system would re-
solve an apparent redundancy in the motor control
system, similar to model 1, but involving fusimotor con-
trol with no direct mechanical effect on the task. As
shown in Fig.5, changing the fusimotor gain simply
changed the slope of the sensor output versus muscle ve-
locity, an effect which, in principle, could be compensat-
ed at least partialy by changing the gain of the interneu-
ron receiving this sensor’s signal (12). A more useful ra-
tionale for fusimotor control is to optimize the signal-to-
noise ratio of the available velocity feedback in the face
of intrinsic noise in the transducer and limitations in the
dynamic range of its output signal (Loeb and Marks
1985; Scott and Loeb 1994). In simulating these process-
es, the velocity was biased to the target velocity for this
model (—0.32 Ly/s) before the gain factor y was applied,
which prevents changes in fusimotor gain from biasing
the sensor asymmetrically toward one end of its dynamic
range. First, we added band-limited (2-5 Hz) noise to the
sensor output, and then we clipped the output (see Ap-
pendix, model 2, and Fig. 6). The fusimotor gain itself
was controlled by command C1, which also contributed
to alpha motoneuron activation, reflecting the general
tendency for intra- and extrafusal activity to occur simul-
taneously (including through common beta motoneu-
rons). It isimportant to note that thisis a highly oversim-

Fig. 5 Schematic design of
model 2, used to test fusimotor
control strategies. Force sensor
omitted and velocity sensor
provided with variable gain set
by fusimotoneuron y (after
adding fixed biasrelative to
target velocity) plus added
band-limited noise n. Symbols
otherwiseasin Fig. 1

neural network %
AVAVAAY

i

Perturbations S+AS

plified representation of normal spindle function, which
includes at least two independently controlled types of
fusimotor input with different and more complex effects
on both length and velocity sensitivity of primary and
secondary spindle afferents (for review, see Loeb 1984).
The relative performance of 121 different command
settings spanning (0.0, 0.0) to (1.0, 1.0) in steps of 0.1 is
shown in Fig. 6. The top graph of each pair shows the
signal from the velocity sensor for the command settings
that produced the best performance in the final, most re-
alistic condition (Fig. 6D). The bottom graph shows the
r.m.s. error for all command settings for the condition in-
dicated, with a red dot indicating the command setting
plotted at the top. For each nominal task condition, each
value of C1 had a corresponding (but gradually chang-
ing) value of C2 that produced the best performance, re-
sulting in a diagonal trough in the error plot. In the con-
dition with no perturbations, no sensor noise, and no out-
put clipping (Fig. 6A), amost al of these “best pairs’
performed equally well (except for those where the C2
gain was limited by the range of the simulations). When
perturbations alone were added to the load (Figure 6B,
average of six trials with 50 ms duration force-pulses of
+0.3 Fyat 0.1, 0.2, and 0.3 sinto the trgjectory), a small-
er group of approximately equivalent optimal strategies
emerged in the middle of the (C1, C2) range. When
noise was added to the velocity sensor in addition to the
force perturbations in the load (Fig. 6C), the best perfor-
mance moved to the higher range of Cl. This corre-
sponded to higher fusimotor gain, which increased the
overall amplitude of the velocity sensor signal so that the
noise was a smaller proportion of the signal. When the
amplitude of the velocity sensor output was clipped (Fig.
6D), the best performance shifted back to somewhat
lower values of fusimotor gain, in which the sensor spent
less time at saturated output levels during the perturba-
tions. Note that the velocity sensor was clipped only for
values that exceeded its output range during the optimal
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Perturbations

Fig. 7 Schematic design of model 3, used to test postural main-
tenance by a pair of antagonist muscles. Black dots in place of
arrows denote inhibitory inputs to motoneurons. Symbols as in
Figs. 1and 5

trajectories in the unperturbed condition (compare top
graphsin Fig. 6A and D).

Postural stabilization with antagonistic muscles
(model 3)

Muscles and their proprioceptors usually operate in an-
tagonist pairs through cross-connected interneurons. As
shown in Fig. 7, even a single such pair introduces many
more sensors, interneurons, and command signals. In or-

Fig. 6 Relative performance of al command strategies for the
conditions indicated in A-D. In each pair of plots, the top plot
shows the spindle output signals for all trials at a command set-
ting producing optimal performance in the most realistic condi-
tion D; the bottom plot shows the error of each command setting
for the performance conditions given, with the red circle indicat-
ing the setting for the top plot. Colors normalized to minimal er-
ror within each condition. A No perturbations, no spindle noise,
no clipping of spindle output. B Six trials with force perturbations
of £0.3 Fyx50 ms at 100, 200, or 300 ms into trajectory, no spin-
dle noise or clipping. C Thirty-six trials with the same six force
perturbations as in B times six sets of band-limited noise in the
velocity-sensor (2-5 Hz, rms amplitude bar next to Noisy), no
clipping. D Thirty-six trials asin C with spindle output clipped to
the range of —0.4 to +0.1
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der to simplify the model, we restricted it to the elements
required to stabilize a mid-position posture; there were
no elements that by themselves could produce movement
of the joint. The muscles operated through realistically
compliant tendons on an arm that presented a purely in-
ertial load (compliant tendons are important when mov-
ing inertial loads, but were omitted for simplicity in vis-
coelastic models 1 and 2). The two interneurons receiv-
ing length and velocity feedback were connected in the
reciprocal manner typical of muscle spindles, with exci-
tatory output to each homonymous alpha motoneuron
and inhibitory output to the antagonist alpha motoneuron
(inhibition would normally be conveyed via a la inhibi-
tory interneuron under separate gain control, but that was
not included in this model). These two interneurons re-
ceived the same C1 command, which permitted the gain
of this feedback to be varied, but prevented any asymme-
try of motoneuron activation unless and until an external
perturbation broke the symmetry of the sensory feed-
back. Similarly, the interneuron receiving the C2 com-
mand received force signals from both muscles and dis-
tributed inhibitory feedback equally to both apha moto-
neurons (in a manner similar to the non-reciprocal Ib in-
hibitory interneurons). Because of limited command in-
puts to this model, a high degree of co-contraction can
only be obtained with high reciprocal reflex gain
(through C1); the co-contraction level can then be re-
duced by increasing the non-reciprocal inhibitory input
and negative force-feedback gain (through C2). The de-
scriptions below are based on the emergent behavior of
the system.

We tested the ability of this model to stabilize the arm
at mid-position in the face of sinusoidal torque perturba-
tions at different frequencies, in a manner similar to the
behaving monkey experiments of Humphrey and Reed
(1983). The positional error surface for 0.25-Hz torque is
shown in Fig. 8A and for 5-Hz torque in Fig. 8B. Fig. 8C
and D show the corresponding energy consumption in
both muscles, based on a model proposed by Schutte et
al. (1993), which includes the very large effect of sarco-
mere velocity on the economy of force production (see
Appendix for details). The shapes of the error surfaces
for the two frequencies of perturbation are very different,
in fact almost reciprocal, despite the fact that the model
system and the behavioral task (stabilize the arm at mid-
position) were the same. To understand these differences,
we picked three sets of control settings for kinetic analy-
sis (Fig. 9):

I. Moderate co-activation with low-gain length-servo,
which produced excellent performance and low ener-
gy consumption at 5 Hz, but very poor regulation at
0.25 Hz.

Il. Moderate co-activation with high-gain length-servo,
which produced excellent performance and low ener-
gy consumption at 0.25 Hz, but very poor regulation
at 5 Hz.

[11. High co-activation with moderate-gain length-servo,
which produced fairly good performance, but at fair-
ly high energy cost for both perturbation frequencies.
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Log of sum of
angle deviation

energy consumption

Fig. 8 Performance of model 3 for a wide range of command set-
tings (C1, C2) during sinusoidal force perturbations at 0.25 Hz
(A) and 5 Hz (B). C, D Corresponding plots of total energy con-
sumption. Roman numerals (I, 11, 111) denote strategies selected
for detailed analysisin Fig. 9

At low frequencies, the high-gain length-servo of strate-
gy Il provided the best trade-off between position and
energy consumption when it operated just at the edge of
instability. The same degree of co-activation, but with a
low gain (strategy |) performed poorly because the ve-
locity of the perturbations was too slow to produce much
stabilizing force from the intrinsic properties of the mus-
cles. Even higher co-activation (strategy |11) produced a
tremor-like oscillation due to the interaction of the high
force and length feedback and the activation delay. For
high frequency perturbations, strategy | (low gain) pro-
vided the best trade-off because the activation delays in
the stretch-reflex loop were longer than a half-cycle of
the torque perturbations, causing their contribution to be
out-of-phase and destabilizing. Co-contraction was the
only effective strategy for opposing such rapid perturba-
tions because the intrinsic force-velocity properties of
muscle are instantaneous. Its effectiveness is limited by
willingness to expend energy on co-contraction and by
the in-series compliance of the tendons incorporated to
make this model realistic.

5 Hz

Log of sum of
angle deviation

o oo
- N W

o o

energy consumption

0.5

1
2 ) C1

In one sense, al of the command states possible for
model 3 are redundant in that they all maintain the arm
at the desired position (centered) and velocity (zero) and
they &l respond to perturbations with restoring forces.
Optimal strategies could be identified only when the task
was further specified by including the frequency of the
perturbations and by considering metabolic as well as ki-
nematic performance criteria. When such considerations
were added, the performance of this very simple system
became similar to that reported in the forearm of a be-
having monkey (Humphrey and Reed 1983).

Discussion
Sensitivity to model parameters

The very simple models employed in this study were se-
lected in order to identify qualitatively their emergent
behaviors rather than to simulate quantitatively the per-
formance of any particular biological limb. The main
consideration in selecting specific functions and coeffi-
cients was that the system exhibit a sufficiently wide
range of stable behavior in order to assess the relative
performance of the range of commands tested. In the
course of developing the models described here, we ex-
perimented with a wide range of different model archi-
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tectures and parameters. As reported previously for
somewhat more realistic model systems, it seemed to be
important for interneurons to provide sufficiently rich
multimodal sensory feedback (Loeb et al. 1989, 1990)
and for muscle models to incorporate arealistic force-ve-
locity relationship (Brown and Loeb 1999). Springlike
restoring forces, such as used in the alpha equilibrium
model of limb control (Bizzi et al. 1984), were not very
effective in dealing with pulsatile force perturbations,
whether they arose from the intrinsic properties of mus-
cles or from reflexes. Details such as an additive or mul-
tiplicative relationship of the sensory signals (e.g., length
plus velocity asin models 1 and 2 vs. length times veloc-
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)
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ity as in model 3 or various exponential relationships
proposed previously for spindle models, Houk et al.
1981) had little effect on the qualitative performance of
these models, athough a multiplicative gain from the
command signals was important.

M echanisms of sensorimotor regulation

“ Preflexes’ —intrinsic muscle properties (model 3)

The complex intrinsic properties of muscle are at the
lowest level of the hierarchy. Perturbations of length and
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particularly velocity produce changes in contractile force
with zero delay (as shown in Fig. Al; Brown et a.
1996). We have caled these responses “preflexes’
(Brown et al. 1995; Brown and Loeb 1999) because they
depend on the activation level of the muscle and hence
are under CNS control. The preponderance of antagonist
muscle pairs in musculoskeletal architecture makes it
possible for the brain to change the gain of the preflexes
independently of the net torque available to produce
overt movement or reaction forces in external objects. In
various preparations and behaviors, preflexes appear to
provide substantial and immediate responses to perturba-
tions, which tend to stabilize the system (Humphrey and
Reed 1983; Gottlieb 1994), thereby reducing the gain re-
quired in the reflexive feedback loops and reducing the
instability that tends to arise when using high gains in
loops with long delays (Gordon et a. 1986; Loeb et al.
1994). (Physiological systems usually include substantial
nerve conduction and synaptic transmission delays as
well as the muscle activation delays modeled here.)
More generaly, the intrinsic properties of a complete
musculoskeletal system can be described as a complex
impedance, including spring-like (force-length) and vis-
cous-like (force-velocity) preflexes plus inertial (force-
acceleration) terms (Hogan 1985). In a system with kine-
matic redundancy, the posture of the body can be used to
modulate the inertial (third-order) component of imped-
ance presented at the end-point of the limb.

“Lumpy set” of spinal interneurons (models 1, 2, and 3)

Over the past thirty years, more and more of the spina
interneurons have been identified and their various in-
puts and outputs characterized (McCrea 1986; Jan-
kowska 1992). While many classes of interneurons prob-
ably remain to be discovered, certain patterns and roles
are becoming clear. Spina interneurons generaly re-
ceive some combination of descending and sensory input
and project directly or indirectly to diverse motor nuclei.
The sensory input usually arises from a range of modali-
ties and sources, but it is clearly neither random nor are
all possible combinations represented. In developing the
model system for the simulations presented here, it was
apparent that the controllability of a particular musculo-
skeletal plant in a particular task depended on the avail-
ability of a set of interneurons with reasonable connec-
tivity. Spinal regulators composed of poorly chosen in-
terneurons may produce only inadequate or unstable
control programs, regardless of gains (Loeb et al. 1989).
Changing the conditions for which a given task was opti-
mized often resulted in a similar nominal activation of
the motoneurons in the absence of perturbations (U), but
a very different distribution of activity among the avail-
able interneurons driving those motoneurons (model 3,
Figs. 8 and 9). This switching function confers advanta-
ges for control that are not present in other models of
motor control that are based on convergence of com-
mands and feedback on a single type of interneuron,

such as the lambda model of the equilibrium-point hy-
pothesis (Feldman and Levin 1994). Such advantages
have been noted before (Bullock and Contreras-Vidal
1993), but those models have not explained how the
brain learns to achieve them.

The same spina interneurons that produce nominal
motoneuronal activity (U) also produce reflex activity
(AU) both in our model and in physiological systems. Un-
like our linear model, however, AU in real organisms may
differ qualitatively as well as quantitatively from U. This
is because rea neurons have nonlinear threshold proper-
ties. By selectively polarizing various inactive motoneu-
rons or interneurons near or far from threshold, the con-
troller can program the regulator to eliminate some reflex-
es (Horak and Diener 1994) or to produce patterns of net
reflex muscle activation that are very different from those
that occur in the absence of perturbations (e.g., short-la-
tency non-autogenic reflexes; Cole et a. 1984; Cole and
Abbs 1987). This seems to be particularly true for cutane-
ous inputs, which often trigger complex responses that are
not simply scaled up versions of the ongoing motor pro-
gram and which may be learned rather than genetically
specified (Loeb 1993). These contingency responses may
be quite different from the simple reflexes that necessarily
arise from the convergence of sensory signals on interneu-
rons that are nominaly active.

The various classes of interneurons that have evolved
in the spinal cord probably reflect something about gen-
eral principles of control in mechanical systems as well
as the particular musculoskeletal linkages of the species
in question. The interneurons employed in our models
are most like the propriospinal interneurons (Jankowska
et a. 1973; Lundberg 1992). The roles and relative im-
portance of such interneurons for voluntary movements
of the limbs have been well demonstrated (e.g., Alster-
mark et al. 1986; Nielsen et a. 1995; Pierrot-Deseilligny
1996). The relatively recent phylogenetic development
of direct corticomotoneurona connections (Maier et al.
1997) offers away to bypass the limitations of the preex-
isting interneuronal system when entirely new behaviors
are required, such as in fine control of the digits and the
vocal tract in primates.

Fusimotor program (model 2)

The fusimotor-afferent-motoneuron loop has been inter-
preted in terms of its potential contribution to observed
patterns of muscle recruitment, either by assuming fixed
patterns of apha-gamma co-activation (Valbo 1974;
Marsden et al. 1976) or more complex schemes (Bullock
and Grossberg 1992; Bullock and Contreras-Vidal 1993).
Muscle spindles, however, provide the main source of
feedback about posture and movement to many different
parts of the CNS (Gandevia et al. 1990; Gandevia 1996).
Their importance appears to be reflected in their distri-
butions (Scott and Loeb 1994), specializations (Rich-
mond et al. 1986), and powerful and continuous modula-
tion of their sensitivity via several distinct types of fusi-



motor control (Schieber and Thach 1980; Loeb 1984;
Prochazka et al. 1989). Different motor tasks are accom-
panied by distinct fusimotor programs (Prochazka et al.
1988), which tune the receptors to the type and range of
mechanical input expected during each task (Schieber
and Thach 1980; Loeb 1984; Loeb and Marks 1985;
Scott and Loeb 1994). This raises the question of how
such programs are computed and implemented.

While some brainstem centers have been found that
exert preferential control over the various aspects of
length and velocity sensitivity of mammalian spindles
(Jeneskog and Johansson 1977), there is little evidence
that the descending control pathways are hardwired for
separate control of gamma versus alpha motoneurons.
Furthermore, beta motoneurons that innervate both intra-
fusal and extrafusal muscle fibers are numerous in cer-
tain mammalian muscles (Barker et al. 1977) and pre-
dominate in submammalian species. In the model pre-
sented here, the fusimotor program is simply an emer-
gent property of a global optimization of performance,
operating through a well-designed set of spinal interneu-
rons, at least some of which have selective effects on
fusimotor neurons. In order for the emergent fusimotor
program to approximate the optimal information solution
for the sensor, it is necessary to include the effects of
both noise and limited dynamic range in the model of the
sensor, as shown in Fig. 6D. The effects on performance
are actually fairly subtle, both in our model (Fig. 6) and
in reality (Loeb and Hoffer 1985). These effects are
well-known, but have generally been treated as side-ef-
fects that simply degrade performance rather than funda-
mental determinants of emergent behavior in sensorimo-
tor systems.

Specification of motor tasks
Extrinsic versus intrinsic coordinate frames

In the brain itself, some coordinate transformations must
occur between relatively orthogonal representations of
the outside world (e.g., visual space) and the intrinsic co-
ordinates of the somatosensory receptors and the spinal
interneurons, but little is known about where these might
be computed. In our model of the task planner, we found
it possible, indeed highly useful, to describe motor tasks
and even external loads (see below) in the intrinsic coor-
dinate frame of the somatosensory receptors. For a visu-
aly directed reaching movement, for example, there
would be a direct conversion from the extrapersonal co-
ordinate frame of the visual system to the set of proprio-
ceptive signals associated with positioning the limb at
that location in space. This is not inconsistent with sum-
maries of neural activity in higher centers, such as motor
cortex, that have been computed in Cartesian extraper-
sonal space coordinates representing the distal end of the
limb (Georgopoulos 1995). The process of computing
population vectors from neural activity data is a form of
curve-fitting that works equally well in any complete co-
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ordinate space (Mussa-lvaldi 1988; Sanger 1994). The
use of an “over-complete” coordinate system, such as
naturally occurring proprioceptors, is actually advanta-
geous in that it represents changes in neural activity that
occur when the same hand movements are made in dif-
ferent arm postures (Scott and Kalaska 1995), whereas
vectors in end-point coordinates cannot represent such
changes (Georgopoul os 1995).

Load versus perturbation

The use of the intrinsic coordinate system of the sensors
for planning motor tasks presents an interesting opportu-
nity for identifying and adjusting for loads in a simple
way, a particularly vexing problem in robotics (Atkeson
et a. 1986). The sensors available in Fig. 1B include all
of the state variables (force, length, and velocity) neces-
sary to describe completely any load consisting of
spring-like and dashpot-like properties. Thus, when the
task planner requests a particular trajectory or target in
terms of these sensory signals, it is implicitly making a
hypothesis about the load — if the surface of states possi-
ble with that load does not intersect the target, then no
controller output can ever reach that target. Note that
there is no distinction between the intrinsic load of the
limb itself and external loads added to that limb. Note
also that any complete set of sensory modalities could be
used, including those that are non-orthogona (e.g., a
pure length sensor like the spindle secondary afferent
plus a combined length and velocity sensor more like the
spindle primary afferent) or those that have no simple re-
lationship to traditional state variables such as force,
length, and velocity. (Characterization of inertial 1oad re-
quires information about acceleration, which is probably
computed from force, pressure, and velocity over time
rather than sensed directly.) Representing load in what-
ever intrinsic sensory coordinates are available avoids
the computationally intensive conversion of sensory data
into load-centered descriptions such as mass, inertia, and
compliance and then the further conversion into the
body-centered representations normally required to plan
manipulation of loads by robotic controllers.

In the simulations presented here, the target always
lay on the achievable surface in the multidimensional
sensory space S. Random perturbations caused random,
but symmetrically distributed deviations between actual
sensory feedback S and desired feedback S*, which the
controller attempted to minimize by selecting the opti-
mal command signals. Any persistently nonrandom error
would be interpreted in our system as the cue to change
the estimate of load. This might account for the well-
known “hefting behavior” of subjects asked to character-
ize the inertial properties of an unknown object in order
to decide how to manipulate the object (Klatzky and Le-
derman 1993). The subject makes an estimate of the load
based on visual appearance and selects a target trajectory
in a well-practiced part of space S. The behavior is then
repeated several times rather than only once; in our mod-
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el system, this is necessary to distinguish the effects of a
random perturbation from a persistent error in load-esti-
mation, both of which result in nonzero S-S¢.

Over-compl ete systems ver sus under specified tasks

In the absence of perturbations, all three of the models
presented here could have been described as over-com-
plete in that they produced similar performance for a
broad range of different command signals. Various at-
tempts have been made to solve “redundancy problems’
by postulating the existence of rules in the central ner-
vous system, whereby otherwise equivalent control
strategies are automatically ranked according to internal
criteriathat are not obvious from the specification of the
task itself. Examples include minimizing total muscle
activation, force, or energy consumption, or maximizing
straightness or smoothness of trgjectory (Davy and
Audu 1987; Collins 1995). In our models, the addition
of perturbations to the task resolves the redundancy
without adding performance criteria beyond the original
kinematic target (see also Brown and Loeb 1999). Re-
cently, Sabes et al. (1998) analyzed trajectories in a
three-dimensional pointing task around an obstacle and
identified just such an implicit strategy; the preferred
trajectories adopted by subjects took advantage of the
inertial properties of the arm to minimize the possibility
that random, internally generated perturbations in their
motor output would cause collision with the obstacle.
All of this suggests that at least some of the motor in-
variances that have been described in the motor psycho-
physical literature may emerge from implicit constraints
buried in the task or the lower levels of the neuromuscu-
lar system rather than from computational strategies of
the brain.

As the number of elements increases, there are likely
to be more local minima in the kinematic control space.
In principle, these can be resolved by appeals to kinetic
and metabolic parameters, such as the energy consump-
tion used, to distinguish the local minima in Fig. 8 (al-
though in practice, they may remain matters of individu-
a habit or style). One powerful mechanism contained
within our model, but unexplored in these simulations is
the use of the weighting coefficients (W) that are part of
the specification of the target. These change the relative
contributions of various sensory modalities to the error
signal that is minimized by the adaptive controller. By
setting Ws appropriately, the task planner can cause the
adaptive controller to settle on command strategies that
optimize particular performance criteria such as speed,
effort, or force or positional error with respect to the tar-
get (Stein 1982). Thus, the general form of the model is
suitable for exploring a wide range of classical motor
psychophysical phenomena. It should also be noted that
more realistic models could incorporate time-varying
command templates to control explicitly the trajectory as
well as the end-point of tasks, for example to produce
movement around an obstacle.

Implications for experimental design

One general prediction of these hierarchical models is
that tasks that appear to be similar under nominal condi-
tions will be performed using quite different control
strategies if the subject perceives a change in the proba-
bility that particular perturbations will occur during the
tasks. These control strategies may manifest themselves
as different distributions of EMG activity in various
muscles during unperturbed trials and in the gain of vari-
ous reflexes elicited when a perturbation actually occurs,
both types of strategy have been observed in human sub-
jects performing a pseudorandomly perturbed pointing
task (Jiang, Kim, Lee and Loeb, unpublished data from
experiments in progress). Note that the critical factor is
the perception of the subject rather than the actual occur-
rence of perturbations. This makes it possible to study
the performance of the task with and without various
perturbations as long as the overall probability distribu-
tion does not change sufficiently to be noticed. Con-
versely, if the behavioral strategy selected by a subject
depends on his or her perception of the probability of oc-
currence of external and internal perturbations or the
need to avoid fatigue, then we must be careful to design
behavioral experiments in which the subject isin a pre-
dictable steady-state regarding the expectation and con-
sequences of perturbations, both those applied externally
by the experimenter and those likely to be generated by
the subject’s own neuromuscular apparatus.

Appendix
Muscle model

The muscle model had identical initial parameters in
each of the three simulations. An automated script for
generating scaled muscle models with these properties is
described under model 3.

L, (peak of tetanic force/length relationship) 10 cm

— R, (tetanic isometric force at L) 600 N
— mass of muscle 0.25kg
— L (model 3 only) 15cm

We used a Hill-type muscle model (Hill 1938) with a
contractile element and paralel passive elastic element.
A series-elastic tendon was incorporated into model 3
only (for parameters, see Fig. A4). The equations and
constants for all musculotendon components were taken
from Brown et a. (1996), which is based on an experi-
mental study of the slow-twitch feline soleus muscle
(Scott et al. 1996). The genera properties of the muscle
model areillustrated graphically in Fig. AL

Activation filter

In order to simulate the excitation-contraction delay, a
filter was interposed between the motoneuron excitation
(u) and the muscle activation that drives the muscle
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Fig. A2 The hatched areas represent the motoneuron excitation
(impulse in top graph, train in bottom graph), while the unshaded
curves represent the muscle activation after the excitation has
been filtered. Two different durations of motoneuron excitation
and their resultant muscle activations are depicted

model. The filter delays the activation 15 ms and spreads
it over the next 105 ms, so that the effects of any neural
input last a maximum of 120 ms. The digital filter is de-
scribed by the following equations:

3 b (n-i) 1
N 1

act(n) = =T Nleﬁ
2
b =Sin%1.75D—(i '1'\3%DT)ZE

where act is the muscle activation, u, the motoneuron
excitation, n the simulation frame number, and T the
simulation frame period (in ms).
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Fig. A3 Spindle-noise waveforms used in model 2

As shown in the Fig. A2, the step response of this
leaky integrator produces realistically fast rise and slow
decay times, although its impulse response is actually the
reverse. For the conditions under which this model was
used (step increases in command inputs with relatively
gradual modulation by sensory feedback), the unphysio-
logical impulse response has arelatively small effect.

Model 1 (single-muscle model)

The single muscle acted directly on a massless |oad,
which was modeled as the sum of one velocity-depen-
dent element (nonlinear viscosity) and one length-depen-
dent element (nonlinear spring):

Load (L,V) = (L - L) + -~ +S"9n(5V) OV

Excitation of the motoneuron depended on two interneu-
rons, one force- and length-sensitive and the other veloc-
ity- and length-sensitive; the sum was clipped between
0-1. Lengths were biased to 0.5 L

u(L,V,F) = CL[(L - 0.5) — F] + C2 q(l_ ~05) +%]

The C1 and C2 terms represent command inputs to the
respective interneurons, which were simulated for all
combinations from 0 to 1, with steps of 0.1. The set of
12 perturbations included magnitudes of -0.2, —0.1,
+0.1, and +0.2 F,, duration of 50 ms, applied at either
100, 200, or 300 ms after onset of the command inputs to
the interneurons.

Model 2 (fusimotor model)

The muscle and load models were the same as in model
1. Motoneuron excitations were defined as;

u, = CLY(L - 0.5)
Uy (L,V) = C1O(L - 0.5) + C2
(L = 0.5) + W, [(V = Viorger) O, + n0ise]}

where W, is the spindle-velocity weighting, chosen to be
2.5; Vigrge the target-velocity bias, chosen to be—0.32 Ly/s;
and noise the noise value.

The range of inputs to the interneurons and the set of
perturbations were the same as in model 1. Six different
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musculotendon component in
the Working Model with prop-
erties described in Brown et al.
(1996) (see Fig. A1) and used
throughout this study. This
script and information on how
to useit are available on the
Internet at http://brain.phgy.
queensu.ca’muscle_model

spindle-noise waveforms (Fig. A3) were generated by
summing 101 sine waves distributed evenly between 2
and 5 Hz with random time delays:

noisa(t) = jg';s n[ZH(%i . 2) Ot - rand)] 00.015 Ly /s

where rand is arandom number between 0 and 1.

Model 3 (two-muscle model)

The musculoskeletal parameters are shown schematical-
ly in Fig. A4, which depicts the graphical user interface
of the Working Model 2D 4.0.1 software (Knowledge
Revolution, San Mateo, Calif., USA). Note the incorpo-
ration of a series elastic element based on equations and
constants from Brown et a. (1996).

Each muscle had an independent neuron governing
the activation of that muscle. The activation was depen-
dent on the force, length, and velocity of the muscle. The
equation for activation level of the flexor is given below.
The same equation was used for extensor activation, but
with any terms referring to the extensor switched to refer
to the flexor and vice-versa:

Uy (flexor) = C1
(L -05)0(C, +Cy V) - (L. - 0.5) D(C, +Cy (V)]

Fe +F
+C2D§,—¥§

0.05 mA‘/A

where C, is the length-weighting factor, chosen to be 4,
and C,, is the velocity-weighting factor, chosen to be 0.5.
In this simulation, C1 and C2 values varied between 0
and 2, with steps of 0.25.

The perturbation was a sinusoidal torque, with an ini-
tial delay before applying the perturbation where the
torque was O:

Tperturbation(t) =G s n[Zn D(t - tde|a1y) DfFGQ]

where ¢, is the perturbation-torque constant, chosen to
be 5 Nm; t,q,, the initial delay before perturbation starts,
chosen to be 0.1 s; and freq the frequency of perturba-
tion, chosen to be either 0.25 or 5 Hz.

The energy consumed by the two muscles is based on
the mechanical power generated by the muscles and the
heat generated by the muscles (equations and constants
from Schutte 1992; Schutte et al. 1993). The heat gener-
ated is based on the sum of the maintenance heat and the
heat generated by shortening and lengthening of the
muscle:

E=PR,+h B,=-FIV

h = (0.7, fi(L) +0.3¢,) Dact OR
+loa OV OFL(L) Cact UR, whenV < 0.204
(0.35V — 0.035) fl(L) Clact R, otherwise

where ¢, is a constant, determined to be 0.07 (Schutte
1992); FL(L) the normalized force-length curve; act the
muscle activation; R the recovery heat constant, deter-



mined to be 2.5 (Schutte 1992); a a constant, determined
to be 0.16+0.18F ., .(muscle) (Schutte et a. 1993); and
V the velocity of the musclein terms of Ly/s.
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