
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007 1909

Model-Based Development of Neural
Prostheses for Movement

Rahman Davoodi*, Chet Urata, Markus Hauschild, Mehdi Khachani, and Gerald E. Loeb, Member, IEEE

Abstract—Neural prostheses for restoration of limb movement in
paralyzed and amputee patients tend to be complex systems. Sub-
jective intuition and trial-and-error approaches have been applied
to the design and clinical fitting of simple systems with limited func-
tionality. These approaches are time consuming, difficult to apply
in larger scale, and not applicable to limbs under development with
more anthropomorphic motion and actuation. The field of neural
prosthetics is in need of more systematic methods, including tools
that will allow users to develop accurate models of neural pros-
theses and simulate their behavior under various conditions before
actual manufacturing or clinical application. Such virtual proto-
typing would provide an efficient and safe test-bed for narrowing
the design choices and tuning the control parameters before actual
clinical application. We describe a software environment that we
have developed to facilitate the construction and modification of
accurate mathematical models of paralyzed and prosthetic limbs
and simulate their movement under various neural control strate-
gies. These simulations can be run in real time with a stereoscopic
display to enable design engineers and prospective users to eval-
uate a candidate neural prosthetic system and learn to operate it
before actually receiving it.

Index Terms—Functional electrical stimulation (FES), musculo-
skeletal modeling, prosthetic arms, simulation, virtual reality.

I. INTRODUCTION

CONTROLLERS in functional electrical stimulation (FES)
systems for paralyzed limbs and in motorized prosthetic

limbs for amputees are complex because they must solve prob-
lems of sensorimotor coordination similar to those normally
handled by the central nervous system. These controllers must
continuously coordinate the actions of nonlinear, redundant,
and nonstationary actuators such as muscles to move the limb

Manuscript received July 25, 2006. This work was supported in part by the
Alfred Mann Institute for Biomedical Engineering, University of Southern
California, by the National Science Foundation Engineering Research Center
for Biomimetic Microelectronic Systems (EEC-0310723), and by Defense
Advanced Research Projects Agency’s Revolutionizing Prosthetics contract to
the Applied Physics Laboratory, Johns Hopkins University. Asterisk indicates
corresponding author.

*R. Davoodi is with the Alfred Mann Institute for Biomedical Engineering
and the Department of Biomedical Engineering, University of Southern Cali-
fornia, 1042 Downey Way, Los Angeles, CA 90089 USA (e-mail: davoodi@usc.
edu).

C. Urata is with the Urata Corporation, Waianae, HI 96792 USA (e-mail:
chet@uratacorp.com).

M. Hauschild is with the Department of Biomedical Engineering, University
of Southern California, Los Angeles, CA 90089 USA (e-mail: hauschil@usc.
edu).

M. Khachani is with the Alfred Mann Institute for Biomedical Engineering,
University of Southern California, Los Angeles, CA 90089 USA (e-mail:
khachani@usc.edu).

G. E. Loeb is with the Alfred Mann Institute for Biomedical Engineering and
the Department of Biomedical Engineering, University of Southern California,
Los Angeles, CA 90089 USA (e-mail: gloeb@usc.edu).

Digital Object Identifier 10.1109/TBME.2007.902252

with kinematically redundant joints and mechanically inter-
acting segments to desired targets in 3-D space. Further, these
movements must be performed in the face of external perturba-
tions and in coordination with residual voluntary movements
so that man and machine operate in harmony. Design of con-
trollers with such sophistication is obviously nontrivial. Even
the relatively simple systems that have been available clinically
have relied on and often taxed the subjective judgment of
experienced prosthetists [1]–[4]. Such ad hoc design methods
are time consuming, they produce inconsistent results among
therapists, and they become impractical when extended to more
complex prosthetic systems and to a wider range of activities
of daily living.

Systematic design methods in other fields (e.g., aeronautics,
chemical processing, etc.) usually employ a mathematical
model of the plant as a test-bed in which to design and test
controllers even before the plant is manufactured. Similarly,
developers of neural prostheses have been interested in using
mathematical models and computer simulations of prosthetic
and paralyzed limbs to design and evaluate prosthetic control
systems systematically before actual clinical implementation
[5]–[12].

In these model-based analyses, computerized mathematical
models serve as test-beds with precisely controllable experi-
mental conditions to analyze the performance of the neural pros-
thesis under various operating conditions, analyze the stability
and sensitivity to model and control parameters, and examine in-
ternal variables that are not accessible in experimental trials. De-
spite its potential, however, applications of model-based anal-
ysis in design and fitting of neural prostheses have been very
limited. One of the main reasons is the inability to anticipate and
model the voluntary commands from the patient that are an inte-
gral part of the neural prosthetic system. Indeed, the ability of a
subject to learn to operate the prosthetic system without undue
visual and mental attention is critical for clinical acceptance.
To avoid this difficult modeling problem, most researchers have
abandoned model-based analysis in favor of trial-and-error ex-
perimentation with actual prosthetic systems. For systematic
model-based analysis, some researchers have developed sim-
plified models of the voluntary control system [6], [11], [13],
some have treated it as a disturbance that must be rejected by the
neural prosthetic controller, and some have tried to eliminate its
effects by constraining the patient or instructing them not to use
their voluntary movements [14]–[16]. As a result, model-based
analyses have been limited to simple applications such as con-
trolling the force of a single muscle [17] or controlling the move-
ment of a single joint [18], [19], where voluntary contributions
are completely absent. But real-world neural prostheses require
significant voluntary contributions from the patient that are pur-
poseful and coordinated. These actions control the movement of
the residual limb while at the same time a prosthetic controller
operates the prosthetic or paralyzed part of the limb. Further,

0018-9294/$25.00 © 2007 IEEE



1910 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

the patient may provide continuous voluntary commands to the
prosthetic system in the form of residual limb movements or
electrical activity of the residual muscles, peripheral nerves, or
neurons in the cerebral cortex. The voluntary contributions to
movement of the prosthetic system are significant and must be
included in any systematic analysis method. Furthermore, they
can be expected to change over time, similarly to the acquisi-
tion of any new motor skill. The rate of learning is itself a major
determinant of clinical acceptability.

As a framework for systematic model-based analysis of pros-
thetic systems, we have developed a software tool known as
musculoskeletal modeling software (MSMS) that can be used to
model and simulate paralyzed and prosthetic limbs. Real-time
patient-in-the-loop simulations allow the users to investigate
systematically the dynamics of interactions between adaptation
and learning in the patient’s central nervous system and the
neural prosthetic control system without having to model the
voluntary contributions of the subject. A similar approach is
used in flight simulators where a human subject can learn to op-
erate a complex machine in a safe environment. Here, we will
discuss the applications of model-based analysis to design and
fitting of neural prostheses and review the currently available
software tools for such analyses. Then we will describe the mo-
tivation for and the status of the MSMS software development
project in our laboratory and its application to design and fit
neural prosthetic systems.

II. APPLICATIONS OF MODELS OF NEURAL PROSTHESES

We envision three types of simulation analyses that can be
used to facilitate the design and fitting of neural prosthetic sys-
tems: 1) dynamic simulations for model-based design and evalu-
ation of neural prosthetic controllers; 2) real-time dynamic sim-
ulations with the patient-in-the-loop for controller design and
patient training; and 3) dynamic simulations for clinical fitting
of neural prostheses to individual patient with specific disability.

Dynamic Simulations of Neural Prostheses: The purpose of
these simulations is to predict the movement of the limb in re-
sponse to a given control strategy. Researchers and developers
can use these simulations to test and compare different combi-
nations of actuators and control strategies to narrow the choices
and come up with the best strategy for a given control problem.
These simulations may be performed repeatedly to optimize
the parameters of the controller or to perform sensitivity anal-
ysis. Because these simulations do not have to run in real-time,
they can be made complex by inclusion of model details and
components.

Dynamic Simulations of Neural Prostheses With the Patient in
the Loop: In these simulations, instead of modeling the patient’s
voluntary actions, the patient is placed in the simulation loop.
These patient-in-the-loop simulations are usually performed in
a virtual reality environment (VRE) where the patient can gen-
erate voluntary commands to operate a simulated limb. The re-
sulting motion of the simulated limb can be displayed to the
patient from his/her point of view as stereoscopic visual feed-
back. This enables the patient to see the consequence of his/her
voluntary actions and, therefore, learn to operate the candidate
neural prosthesis before actually receiving it. The main require-
ments for these dynamic simulations are the real-time execution

of simulation and availability of interfaces between the simula-
tion code and the patient via interface hardware. This type of
simulation will also be useful in experiments with behaving non-
human primates to determine the adequacy of command infor-
mation that can be derived from novel interfaces such as cortical
microelectrode arrays [20], [21].

Dynamic Simulations for Clinical Fitting of Neural Pros-
theses: The two simulation analyses previously described are
general and can be applied to any neural prosthetic system. They
are also aimed at more sophisticated users such as researchers,
engineers, and developers who can use them to investigate
different solutions to a specific fitting problem to come up with
the best solution. Once an acceptable solution is found, the
simulation models and the fitting methods must be packaged in
an easy to use environment for clinical application. The graphic
user interface (GUI) of such specialized applications must
expose only the relevant functionality for the clinical fitting of
a specific neural prosthesis to a specific clinical problem. It
must also allow the model of the physical plant to be modified
to accurately describe the physiognomy and clinical condition
of each individual patient.

III. CURRENT METHODS AND TOOLS FOR NEURAL

PROSTHETIC MODELING

Researchers and developers of neural prostheses have per-
formed model-based analyses of their systems by writing their
own computer programs, using commercial software tools, or a
combination of commercial and in-house software.

Software programs for modeling and simulation of neural
prostheses are complex and difficult to develop. In-house devel-
opment of such software (especially manual derivation of the
equations of motion) is difficult and prone to errors. Further,
each model is usually developed for a very specific purpose and
tends to be designed and written in a programming environment
that is convenient for the developer but not conducive to easy
maintenance, sharing or reuse of its component parts. There are
many such programs that have taken a long time to develop but
have been discarded after the completion of the specific project
or student thesis because they could not be shared or used by
people other than the original developers.

Some clinical researchers have used commercial modeling
software developed for other applications. For example, soft-
ware packages for simulation of mechanical systems have been
used to model musculoskeletal and neural prosthetic systems:
ADAMS (Mechanical Dynamics Inc.) [5], [22], SD-Fast (Sym-
bolic Dynamics Inc.) [6], [13], DADS (LMS International)
[23], and Working Model (MSC Software Corp.) [24]. These
software packages relieve the user from the error prone and
painstaking process of deriving and programming the equations
of motion. However, they lack the specialized components
specific to physiological systems, such as models of muscle
force production and complex moment arms. These model
components must then be developed in a compatible format
and interfaced, if possible at all, with the specific mechanical
simulation software. These packages also lack the capability
to generate realistic, real-time animations of the motion in
musculoskeletal systems or model man-machine interactions in



DAVOODI et al.: MODEL-BASED DEVELOPMENT OF NEURAL PROSTHESES 1911

patient-in-the-loop simulations that are essential for the design
and evaluation of clinical systems.

The first specialized software for development of anatomi-
cally realistic musculoskeletal models was SIMM [25], [26].
The user generates (or otherwise obtains) a set of input files
describing bone surfaces, articulations, and muscle-tendon pa-
rameters, and uses SIMM to graphically assemble these com-
ponents into an anatomically realistic model. With the help of
SD-Fast, SIMM generates a set of files in the C programming
language containing the equations of motion for the muscu-
loskeletal model that can be compiled and used for dynamic
simulations. As specialized musculoskeletal modeling software,
SIMM provides important functionality that simplifies the cre-
ation of musculoskeletal models. A model generated by SIMM
has limitations on its ability to incorporate run-time changes of
muscle excitation, external forces, and prescribed motion, thus
handicapping its use to study neural prosthetic control systems.
For example, the muscles can only be excited in an open-loop
manner, while many applications involve closed-loop control
of muscles. Overcoming these limitations requires C program-
ming skills and familiarity with the structure of the SIMM-gen-
erated C programs. Further, any other component required by
the system under study (e.g., sensors, command signals, con-
trollers) must be programmed in C by the user.

As a result of these limitations in the existing software, many
researchers involved in modeling neural prostheses have been
forced to develop and maintain their own modeling software, ei-
ther to replace or augment the limited commercial software now
available. For example, our firsthand experience with SIMM
led us to develop an add-on software package known as MMS
[27], [28] to enhance SIMM’s capabilities and overcome some
of its limitations. MMS allows modelers to add interactive ex-
ternal forces, prescribed motion, and sensors to their SIMM
model without writing any code. It then automatically exports
the resulting model to the dynamic simulation environment of
Simulink in MATLAB (Mathworks Inc.) that is familiar to most
academic users and provides access to additional toolboxes and
utilities for model-based analysis.

Although the SIMM musculoskeletal modeling software was
enhanced greatly by the features provided by MMS, it was still
not suited for real-time patient-in-the-loop simulations. Further-
more, the required set of software tools was expensive, it was
difficult to learn and use, it was difficult to maintain, and more
importantly, it was slow to adapt to the ever growing needs of
the community. These shortcomings motivated efforts in var-
ious laboratories to develop a new generation of software for
musculoskeletal modeling and model-based analysis of neural
prostheses. Our efforts started in 2000 with a series of meet-
ings with stakeholders in the field and led to the launch of the
MSMS project in late 2002. MSMS, whose features and appli-
cations are described in the following, is being developed as an
open-source software tool for model-based analysis and fitting
of neural prosthetic systems.

In 2004, the National Institutes of Health established a
Center for Biomedical Computation at Stanford University
that is tasked with the development and free distribution of
open-source software for physics-based simulation of bi-
ological structures at multiple scales—from molecules to

Fig. 1. Main components in neural prostheses for restoration of limb move-
ment to paralyzed and amputee patients. In both cases, the patient generates
some form of voluntary command signals that are measured by the prosthetic
sensors. The sensory information is fed to the prosthetic controller to calculate
the control signals. The simulation model predicts the movement of the actual
limb in response to the control actions and other external forces and perturba-
tions. The movement and interactions of the limb with the environment are sent
to the patient via visual and haptic displays so that he/she can evaluate the out-
come of his/her control actions and adjust them, if necessary, to perform the
movement task successfully.

organisms. One of the main groups in the center is the neu-
romuscular biomechanics group that is led by Scott Delp,
the original developer of SIMM. This group is developing
open-source software for physics-based simulation of biome-
chanical systems. The development and free distribution of such
open-source software is expected to greatly facilitate research
and provide the framework to allow individual researchers
to share their models and software with the community (for
information on this effort visit www.simbios.stanford.edu). The
software developed by this group and MSMS have a common
objective which is the development and sharing of realistic
musculoskeletal models. But MSMS focuses in addition on
the modeling of prosthetic limbs and the use of prosthetic and
human limb models to design and fit prosthetic control systems
to the patients. In order to facilitate sharing of models between
these and other software environments, we are developing a
standard format for representation of musculoskeletal models
as described in the following.

IV. MSMS SOFTWARE FOR MODELING AND SIMULATION OF

NEURAL PROSTHESES

A. Goals and Objectives

The main purpose of MSMS is to provide a user-friendly en-
vironment for researchers and clinicians alike to model and sim-
ulate the behavior of complex neural prosthetic systems for par-
alyzed and amputee patients. As shown in Fig. 1, these two types
of prosthetic systems have many commonalities and, therefore,
can be modeled in the same software environment. Models of
both prosthetic systems consist of three main blocks: the patient,
the simulated model of the prosthetic limb and controller, and
the hardware/software interface between the two. The patient
generates command signals such as movement of the residual
limb still under voluntary control, electromyographic (EMG)
activity of intact or reinnervated muscles, or activity of neurons
recorded from the peripheral or central nervous system. These
voluntary signals indicate the intentions of the patient and en-
able him/her to control the operation of the neural prosthesis. In
the simplest form, these command signals may be used to turn



1912 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

the neural prosthesis or one of its functions on/off but they more
typically provide multiple, continuously varying control signals
to enable continuous control of the limb movement. The patient
also receives feedback in the form of visual and/or haptic signals
that help him/her evaluate the control outcomes. The simulation
model block contains the mathematical model of the human or
prosthetic limb and the model of the FES or prosthetic control
system. The hardware interface block connects the patient in the
real world to the simulated limb in the virtual world.

B. Analysis of Requirements

Modeling and simulation software for academic research are
usually developed by researchers who have no training in com-
puters and, therefore, are very unlikely to follow professional
software development practices. The result is usually software
tools that are quickly developed to serve the needs of a specific
project but are difficult to maintain or use by others. Given the
complexity of the MSMS project, and to ensure that it satisfies
all of its requirements and is easy to maintain in the future, we
decided to employ professional software development methods.
These included systematic analysis of requirements and devel-
opment and testing of MSMS to satisfy the requirements. There-
fore, the first step in development of MSMS was to analyze its
requirements before writing a single line of code. In a series
of meetings between the software developers and researchers
with domain expertise, the requirements were captured and doc-
umented in different levels of detail.

The analysis of key requirements justified the decision to de-
velop MSMS, identified the main users such as the researchers
and clinicians, identified the key requirements such as the need
for accurate models of human and prosthetic limbs that can
be easily interfaced to models of feedback control systems,
and identified the need for fast simulations for controller op-
timization and real-time patient-in-the-loop simulations. We
concluded that MSMS must have the flexibility to evolve and
grow in the future as new models and data become available
and new applications are identified. We also identified the key
components of MSMS such as the user interface capabili-
ties, classes of model components, and types of model-based
analyses. The next step in analysis of requirements was the
analysis of different use case scenarios in which step-by-step
sequence of actions required to complete different model-based
analyses such as “building a limb model” or “performing
forward dynamic simulation” were captured from the end users
and documented. Use case analysis is an effective method
for capturing the requirements from the users who know the
problem they need to solve but do not have the programming
expertise to translate it into software requirements. Finally,
from the key requirements and the use case scenarios, a more
detailed set of requirements were derived for MSMS software.

To satisfy the previous requirements, we designed the soft-
ware architecture for MSMS that is shown in Fig. 2. The ar-
chitectural block diagram of MSMS has three top-level blocks:
GUI, modeling and simulation, and database that are connected
via standard application program interfaces (APIs). The archi-
tecture allows us to change the GUIs to serve users with different

levels of expertise and interface to third party applications and
devices. APIs are interleaved allowing any block to be replaced
without requiring the rewriting of the other blocks.

C. Software Development and Testing

We have used an iterative software development process to
develop and test MSMS software. The process consists of a se-
quence of short iterations, each implementing, integrating, and
testing a subset of required features. Therefore, each iteration
period (three weeks in our case) results in fully functioning
and tested software with few additional features. The iterative
process is particularly suited to a complex software project such
as MSMS whose full set of requirements is difficult to anticipate
at the beginning of the project.

The main parts of MSMS such as the GUI, the modeling unit
and the database are developed in the Java programming lan-
guage, which supports sophisticated tools such as OpenGL for
graphical rendering. The computationally intensive simulation
unit is implemented in Simulink using Simulink library blocks
and C programming language. The design and interface with
control systems is also performed in the Simulink simulation
environment, which provides many useful tools for the devel-
opment of control systems and a graphical schematic represen-
tation of the system architecture.

D. Features and Capabilities

The development effort to date has resulted in an integrated
environment for modeling and simulation of FES and prosthetic
systems that are described as follows.

Development of Standard Model Representations: Presently,
musculoskeletal models are associated with the text file that
specifies their structure and parameters. Every existing package
defines its own proprietary file format independently. This pro-
liferation of file formats makes it difficult to share, reuse, and
extend models among different groups. Our solution was to de-
velop a standard file format that would be acceptable to all
users and could be expanded indefinitely to deal with unan-
ticipated components, reducing the need for individual model
formats. We have developed a standard file format using exten-
sible markup language (XML), which now includes the defini-
tions of the components found in various neural prosthetic sys-
tems such as the bones, joints, muscles, wrapping objects, and
electric motors. MSMS can also translate models of human or
prosthetic limbs developed in other popular applications. For ex-
ample, models of human limbs defined in SIMM and models of
prosthetic limbs defined in SolidWorks (SolidWorks Corp.), can
be imported into MSMS. Once loaded, the model can be modi-
fied in the 3-D graphical environment of MSMS and exported in
XML file format for sharing with other users and applications.
The conversion from our standard file format to other represen-
tations is also straightforward. Such conversions involve writing
translators that are easier to develop for XML representations
whose rules, structure, and semantics are defined in a schema.
Furthermore, there are many software tools for working with
XML files. The availability of our standard representation and
its schema will allow the other applications to develop transla-
tors to covert to/from our standard XML file format.



DAVOODI et al.: MODEL-BASED DEVELOPMENT OF NEURAL PROSTHESES 1913

Fig. 2. Architectural diagram of MSMS showing its main units: GUI, modeling and simulation, and database. The GUI is the conduit for the user to view the
model and control all MSMS functions. Modeling and simulation provides tools for model building and simulation. It has standard APIs that separates it from
the GUI allowing the developers to change the design of the GUI to meet the needs of different users such as researchers and clinicians without modifying the
underlying code. To ensure continued expansion of capabilities in the future, this unit has utilities to add new model components and import/export models from/to
third party applications. The database unit stores model data in standard XML file formats.

GUI Tools for Model Construction and Manipulation: A
properly designed GUI simplifies the construction, modifica-
tion, and validation of a particular model system. Even when
complete data are available to construct a model, it is often
difficult to incorporate them in a computer model using cur-
rently available software such as SIMM. For example, it is a
major job to iteratively change the position of muscle attach-
ment points and wrapping objects to achieve consistency with
measurements of muscle moment arms. The user has to change
one parameter at a time, plot the moment arm, and visually
compare it to the experimentally measured moment arms for
validation. More intuitive GUI tools and analytical methods
must be developed to allow easy construction and validation of
the models. The GUI of MSMS can load, visualize, animate,
and graphically edit 3-D models of human and prosthetic
limbs (see Figs. 3 and 4). The model can be viewed from a
camera that can be positioned by the mouse or key strokes.
The model can be animated by the motion data from a saved
file or streamed in real-time from a motion capture system or a
dynamic simulation of the same model. The muscle attachment
points can be edited graphically in anatomical coordinates.
The graphical representation of the muscle is composed of the
muscle fascicles and the in-series tendon whose properties can
be edited separately and in varying degrees of detail. The user
can access the parameters and more detailed views of the model
components by clicking on the graphical objects. For example,
the high-level properties window for a muscle shows its mass,
length and fiber composition while lower-level views reveal

Fig. 3. MSMS integrated environment for modeling of human limbs, prosthetic
limbs, and the rehabilitation tasks. A model subject is shown with human right
arm appropriate for FES investigations and a prosthetic left arm appropriate for
prosthetic applications. The box and blocks rehabilitation task is also modeled
in which the patient must move the block from one box to the next.

the force production properties of each fiber type. Among the
features to be added is a context-sensitive mouse also known
as “smart mouse” that will allow the user to use the mouse in
different intuitive ways depending on the object being edited.
For example, after selecting the origin of a muscle, the motion



1914 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

Fig. 4. MSMS screenshot showing the model of an amputee patient with prosthetic left arm performing virtual clothes pin task where the patient has to move the
clothes pins from horizontal bar to vertical bar.

of the mouse moves the attachment point along the surface of
the bone rather than in the – plane of the screen.

In addition to the GUI tools that help the modeler to edit
model parameters manually, analytical methods can be used
to automate the process of automatically finding “best-fit” sets
of parameters to match the model to available data from the
system. For example, the moment arm of a muscle at a given
joint depends on its origin and insertion on the skeleton plus the
shape and size of intermediate objects around which the tendon
is deformed. Currently, MSMS does not have such tools but
it has been designed to facilitate incorporation of optimization
techniques such as those used by Garner and Pandy [29] or other
automated parameter fitting algorithms in the future.

Muscle Wrapping Around Bony Surfaces: In MSMS, the
wrapping of muscles around bony surfaces is modeled by
wrapping algorithms. Different geometric shapes modeling
the bony surfaces are placed on the path of the muscle. Then
the wrapping algorithms are used to calculate the path of the
muscle from its origin to its insertion as constrained by these
objects [30]. MSMS currently supports cylindrical and spher-
ical wrapping objects. Each muscle can have as many wrapping
objects as necessary to model its contacts with different bony
surfaces.

Dynamic Simulations: To perform the dynamic simulations
of the human or prosthetic limb models, first, the differential
equations governing their motion must be derived. These equa-
tions are then integrated numerically to predict the motion of
the limb over time. There are several dynamic engine software
packages that can be used by MSMS to automatically derive
the equations of motion for its limb models. The choice of
the dynamic engine, however, is an important decision with
great implications. For example, the choice of SD-Fast as
the only dynamic engine for SIMM significantly limited its

user base because it increased both the cost and difficulty of
use. To avoid such pitfalls, MSMS architecture is designed
to accommodate any dynamic engine package that might be
necessary for different applications and users. To choose the
appropriate dynamic engines for initial implementation in
MSMS, we performed a side-by-side comparison of several
dynamic engines such as SD-Fast, Autolev (Dynamics On-
line), and SimMechanics (Mathworks Inc.). Sample multibody
models were used to benchmark the speed and accuracy of these
dynamic engine packages. We also considered other features
such as support for closed-loop topologies that are important
in musculoskeletal systems and implementation concerns such
as ease of integration with MSMS. From this comparison, we
chose to implement SimMechanics as the first dynamic engine
for MSMS because it uses fast order (N) formulation to derive
equations of motion, it has a large collection of joints, actuators
and sensors, it can handle open- and closed-loop structures, it
can enforce different types of position and velocity constraints,
and it is readily available to academic users who are one of the
main groups targeted by MSMS. Autolev uses Kan’s formula-
tion that produces very efficient code but because of its design
it could not be integrated with MSMS. SD-Fast has both Kane’s
and order (N) formulations and can be easily integrated with
MSMS. SD-Fast is more expensive than SimMechanics but it
produces equations that execute faster. For example, we applied
these dynamic engines to derive the equations of motion for the
skeletal model of the human arm (right arm in Fig. 3) with 9
degrees-of-freedom (DOF). The equations where then numer-
ically integrated in Simulink using fourth-order Runge–Kutta
algorithm with fixed time step of 1 ms. The average execution
time for each second of simulation in a personal computer (PC)
with 3.6 GHz Pentium processor was 0.425 s for SimMechanics
and 0.124 s for SD-Fast equations. Therefore, the code gener-



DAVOODI et al.: MODEL-BASED DEVELOPMENT OF NEURAL PROSTHESES 1915

ated by SD-Fast for this model executed 3.4 times faster than
SimMechanics. This speed advantage that is mainly due to the
customization of the generated code to the model parameters
might be essential for complex models especially if they have
to run in real-time. Currently, MSMS uses SimMechanics as
its primary dynamic engine but implementation of SD-Fast is
planned for the future.

Once the neural prosthetic model is built, MSMS can auto-
matically build and run dynamic simulations of the model in
Simulink. SimMechanics is used as the dynamic engine while
other Simulink library blocks and C programs (wrapped in
Simulink S-function blocks) are used to simulate other compo-
nents of the system such as preprocessing of command signals
and the operation of feedback control loops. The advantage
of exporting MSMS models to Simulink is that the Simulink
environment is familiar to most users, it is affordable, and it
provides many additional toolboxes for control, optimization,
math, and signal processing that can facilitate investigations.

Real-Time Dynamic Simulations With the Subject in the
Loop: For simulations where the patient or able-bodied subject
is in the loop, the dynamic simulations must run in real-time.
The Windows PC operating system is generally poorly suited
to achieving reliable real-time performance with complex
models and display systems. For MSMS, we have developed
a real-time simulation environment that uses MATLAB’s xPC
Target toolbox [31]. The simulation model of the neural pros-
thetic systems is first exported to Simulink by MSMS. Simulink
itself is not real-time capable, but its models can be compiled
and executed in a separate real-time PC (the xPC) with minor
modifications. Real-time simulations in our lab are performed
in a VRE consisting of 3 PCs that are connected to each other,
the subject, and the measurement and display devices via
input/output (I/O) hardware (see Fig. 5). The main reason for
distribution of VRE elements in multiple PCs is that some
algorithms need to be executed in real-time but do not require
sophisticated video output. The visualization of the VRE on the
other hand requires high quality 3-D video output but does not
need to be executed in real-time as long as minimum delay and
high frame update rate can be ensured. These fundamentally
incompatible specifications require the separation of these two
classes of algorithms to different PCs, one with a real-time
kernel for fast real-time code execution and the other a Win-
dows machine with good video performance but poor real-time
capabilities. We use Flock of Birds (FOB) magnetic motion
tracking system (Ascension Technology Corp.) to measure the
arm movements, but the VRE system can accept properly for-
matted data from any motion capture technology. A gyro-based
three-axis sensor (3DM-GX1, Microstrain Inc.) measures the
head movements that are used to display the movement of the
virtual limb to the subject from his/her point of view. Analog
and digital signals from the subject, such as EMG, control
switches, and external triggers are digitized by a general pur-
pose data acquisition board (PCI-6040E, National Instruments
Corp.). The real-time xPC samples all these inputs to the
prosthetic controller, calculates the control outputs, and runs
the physics-based simulation of the virtual arm to predict its
movement as the result of the control inputs and external forces
in real-time. The predicted movement is sent to visualization

Fig. 5. Architecture of the VRE for real-time dynamic simulations with the
patient in the loop. The VR models are simulated in xPC that is a regular PC
with real-time operating system. xPC measures the command sources from the
subject, calculates the resulting motion of the virtual limb, and sends it to PC
II that displays a 3-D stereoscopic rendering of the limb motion to the subject
from his/her point of view. PC I is used by the operator to develop VR models
and control VR simulations.

PCs for animation of the model limb. Multiple PCs can be used
to display the limb’s movement to the subject, to the operator,
and other users. For example, our configuration employs one
PC for 3-D stereoscopic display to the subject from his/her
perspective via a head-mounted display (nVisor SX, NVIS
Inc.), and a second PC for 2-D display to the operator who can
change his own view of the virtual world independently. The
operator PC provides a user interface for experiment control,
online parameter tuning, and development and downloading of
code to the real-time PC.

Real-time simulations are generally difficult, especially for
detailed models of complex systems. The complexity of the
model, the efficiency of the simulation software, and the avail-
able processing power will determine whether a model can be
simulated in real-time or not. The simulation of the multibody
dynamics is generally fast and is not expected to be a problem
for neural prostheses with realistic DOF. It is, however, more
challenging when the system includes detailed models of bi-
ological components such as muscles and proprioceptive sen-
sors or prosthetic components such as electric motors. These
new components add to the model complexity and the compu-
tational load and because they generally have faster dynamics
than the limb itself, the combined system can be characterized
as stiff for numerical integration. To numerically integrate such
stiff dynamic simulation problems, one can use explicit inte-
gration methods such as Runge–Kutta. But depending on how
stiff the problem is, the required integration time step for accu-
rate simulations might be too small to be achievable in a single
real-time PC. As a remedy to this problem, MSMS provides
multiple simulation algorithms for each model component such
as a muscle or electric motor. This enables the users to tradeoff
simulation accuracy for simulation speed whenever the compu-
tational power is limited and simpler models are acceptable for a
given application. Another solution for stiff problems is the use



1916 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

of implicit integration methods. These integration methods re-
quire more computation for each integration time step but allow
the use of larger integration time steps. For example, we have
simulated a 10 DOF prosthetic arm with ten electric motors (see
Fig. 4) in a 3.6 GHz single processor PC. When we used accu-
rate models of electric motors, the system was too stiff and the
required integration time step for explicit integrators was too
small and, therefore, impractical. But by the use of an implicit
integrator (ode14x in Simulink) it was possible to simulate this
model at a rate of about 100 Hz. We could also use an explicit
integrator (fourth-order Runge–Kutta) that simulated the model
at a rate of about 1000 Hz but we had to use simpler electric
motor models.

E. Current Application Areas

The iterative approach for software development has enabled
us to frequently release working versions of MSMS before its
development is completed. These internal releases are applied
to two applications in FES control of reach and grasp and
neural control of prosthetic arm that provided us with valuable
feedback to improve the design of MSMS before its final re-
lease. These two applications fit within the general framework
of Fig. 1 and are implemented using the hardware setup shown
in Fig. 5. They, however, differ in the MSMS models and the
hardware interface as described in the following.

FES Control of Reach and Grasp: In our laboratory, we are
investigating the control of reach and grasp in quadriplegic
patients. These patients usually retain voluntary control of their
upper arm but are paralyzed in their lower arm. To restore
normal reach and grasp movements to these patients, we are
using the residual movement of the upper arm to voluntarily
drive the FES control of the paralyzed lower arm movement.
One important question is whether the remaining residual
movements are adequate for the control of paralyzed joints
and whether the patient can learn to use them to effectively
operate the FES system. To investigate these questions, we
have used MSMS to build a model of the human arm and the
task environment that are simulated in VRE (similar to the
model in Fig. 3 minus the prosthetic left arm). In VRE, the
patient voluntarily moves his upper arm. These movements
are measured by the FOB motion capture system and sent to
real-time PC via serial bus. The real-time PC then executes the
control algorithm to produce the control signals for the para-
lyzed lower arm. In this example, controllers use the shoulder
joint movement to predict the lower arm movement that would
have been produced if the arm was intact. These calculations
are done by a neural network model that has been trained on
normal reaching movements [32]. The movement of the arm is
then sent to MSMS in visualization PC to animate and display it
to the subject from his/her point of view. The subject, therefore,
can see the effect of his voluntary control actions on the arm
movement and can learn by practice to produce the appropriate
commands to perform the task successfully. In our preliminary
studies, subjects learned to perform the VRE tasks faster by
practice showing that VRE is an effective training environment
for this application [33].

Neural Control of Prosthetic Arm: MSMS and the VRE de-
scribed here are currently used by several teams around the

country as part of a large project sponsored by Defense Ad-
vanced Research Projects Agency (DARPA) to develop new
prosthetic arms for amputees. These teams are using VRE to
investigate innovative prosthetic control strategies. Voluntary
neural signals such as EMG from residual muscles, neural sig-
nals from the residual peripheral nerves or cerebral cortex are
measured by different types of electrodes. The measured neural
signals are then streamed into the real-time PC where they are
processed to extract control signals to operate the prosthetic
arm. These control signals are then fed to a physics-based simu-
lation of the prosthetic arm to predict the movement of the pros-
thetic arm. The simulated movement of the prosthetic arm is
then sent to the MSMS in visualization PC to animate and dis-
play it to the patient from his/her point of view (see Fig. 4). The
visual and haptic feedback helps the patient learn to produce
appropriate voluntary commands to successfully perform the
reaching and grasp tasks in VRE. Currently, the MSMS models
and VRE setup for this application have been developed and
tested with able-bodied subjects producing EMG signals and
prerecorded neural signals. The system is currently being in-
stalled in two laboratories where amputees (generating EMG
signals) and monkeys (generating cortical neural signals) will
control the movement of prosthetic limbs in VRE.

V. CONCLUSION

Neural prosthetic limbs plus the human patients operating
them form very complex systems whose behaviors are difficult
to intuit and, therefore, not amenable to ad hoc design and clin-
ical fitting. We have developed new software known as MSMS
that can simulate the behavior of such complex systems in their
entirety. MSMS allows users to build accurate models of human
and prosthetic limbs or a combination of them in the same en-
vironment. The models then can be exported to Simulink where
physics-based simulations can be performed to predict the be-
havior of the system under various movement control strategies
and external conditions. Accurate simulations including all of
the known system parameters and elements can be performed to
narrow the choices for the control strategy, optimize the control
parameters, and analyze the sensitivity to control and system pa-
rameters. The same models or their simpler versions can be sim-
ulated in real-time with the patient-in-the-loop within the VRE
where the patients can evaluate and learn to operate candidate
neural prostheses before actually receiving them. As a general
framework, MSMS can be used to simulate any neural prosthetic
system. Currently, we are using MSMS for design and evalua-
tion of FES control systems for reach and grasp and prosthetic
control systems for amputees.

ACKNOWLEDGMENT

The authors would like to thank the MSMS project ad-
visors Behzad Dariush, Brian Garner, Emanuel Todorov,
Francisco Valero-Cuevas, Gary Yamaguchi, Ian Brown, Marcus
Pandy, Robert Kirsch, Scott Delp, Stefan Schaal, and Victor
Ng-Thow-Hing for their enthusiastic support and guidance.

REFERENCES

[1] T. Bajd, A. Kralj, J. Sega, R. Turk, H. Benko, and P. Strojnik, “Use
of a two-channel functional electrical stimulator to stand paraplegic
patients,” Phys. Ther., vol. 61, pp. 526–527, 1981.



DAVOODI et al.: MODEL-BASED DEVELOPMENT OF NEURAL PROSTHESES 1917

[2] W. T. Liberson, H. J. Holmquest, D. Scot, and M. Dow, “Functional
electrotherapy: Stimulation of the peroneal nerve synchronized with
the swing phase of the gait of hemiplegic patients,” Arch. Phys. Med.
Rehab., vol. 42, pp. 101–105, 1961.

[3] P. H. Peckham, E. B. Marsolais, and J. T. Mortimer, “Restoration of
key grip and release in the C6 tetraplegic patient through functional
electrical stimulation,” J. Hand Surg. [Am.], vol. 5, no. 5, pp. 462–469,
Sep. 1980.

[4] J. S. Petrofsky, C. A. Phillips, and D. E. Stafford, “Closed loop control
for restoration of movement in paralyzed muscle,” Orthopedics, vol. 7,
pp. 1289–1302, 1984.

[5] M. M. Adamczyk and P. E. Crago, “Simulated feedforward neural net-
work coordination of hand grasp and wrist angle in a neuroprosthesis,”
IEEE Trans. Rehab. Eng., vol. 8, no. 3, pp. 297–304, Sep. 2000.

[6] R. Davoodi and B. J. Andrews, “Computer simulation of FES standing
up in paraplegia: A self-adaptive fuzzy controller with reinforcement
learning,” IEEE Trans. Rehab. Eng., vol. 6, no. 2, pp. 151–161, Jun.
1998.

[7] G. Khang and F. E. Zajac, “Paraplegic standing controlled by func-
tional neuromuscular stimulation: Part II—Computer simulation
studies,” IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp. 885–894, Sep.
1989.

[8] G. Khang and F. E. Zajac, “Paraplegic standing controlled by func-
tional neuromuscular stimulation: Part I—Computer model and con-
trol-system design,” IEEE Trans. Biomed. Eng., vol. 36, no. 9, pp.
873–884, Sep. 1989.

[9] R. F. Kirsch, A. M. Acosta, F. C. T. van der Helm, R. J. J. Rotteveel,
and L. A. Cash, “Model-based development of neuroprostheses for
restoring proximal arm function,” J. Rehab. Res. Develop., vol. 38, no.
6, pp. 619–626, Nov. 2001.

[10] D. B. Popovic, R. B. Stein, M. N. Oguztoreli, M. K. Lebiedowska,
and S. Jonic, “Optimal control of walking with functional electrical
stimulation: A computer simulation study,” IEEE Trans. Rehab. Eng.,
vol. 7, no. 1, pp. 69–79, Jan. 1999.

[11] R. Riener and T. Fuhr, “Patient-driven control of FES-supported
standing up: A simulation study,” IEEE Trans. Rehab. Eng., vol. 6, no.
2, pp. 113–124, Feb. 1998.

[12] A. Soares, A. Andrade, E. Lamounier, and R. Carrijo, “The develop-
ment of a virtual myoelectric prosthesis controlled by an EMG pattern
recognition system based on neural networks,” J. Intell. Inf. Syst., vol.
21, no. 2, pp. 127–141, 2003.

[13] R. Davoodi and B. J. Andrews, “Optimal control of FES-assisted
standing up in paraplegia using genetic algorithms,” Med. Eng. Phys.,
vol. 21, pp. 609–617, 1999.

[14] K. J. Hunt, M. Munih, and N. Donaldson, “Feedback control of unsup-
ported standing in paraplegia-Part I: Optimal control approach,” IEEE
Trans. Rehab. Eng., vol. 5, no. 4, pp. 331–340, Dec. 1997.

[15] M. Munih, N. Donaldson, K. J. Hunt, and M. D. Fiona, “Feedback
control of unsupported standing in paraplegia-part II: Experimental re-
sults,” IEEE Trans. Rehab. Eng., vol. 5, no. 4, pp. 341–352, Dec. 1997.

[16] J. J. Abbas and R. J. Triolo, “Experimental evaluation of an adaptive
feedforward controller for use in functional neuromuscular stimulation
systems,” IEEE Trans. Rehab. Eng., vol. 5, no. 1, pp. 12–22, Mar. 1997.

[17] P. E. Crago, J. T. Mortimer, and P. H. Peckham, “Closed-loop control
of force during electrical stimulation of muscle,” IEEE Trans. Biomed.
Eng., vol. 27, no. 6, pp. 306–312, Jun. 1980.

[18] B. N. Ezenwa, R. M. Glaser, W. Couch, S. F. Figoni, and M. M.
Rodgers, “Adaptive control of functional neuromuscular stimula-
tion-induced knee extension exercise,” J. Rehab. Res. Develop., vol.
28, no. 4, pp. 1–8, 1991.

[19] M. S. Hatwell, B. J. Oderkerk, C. A. Sacher, and G. F. Inbar, “The
development of a model reference adaptive controller to control the
knee joint of paraplegics,” IEEE Trans. Autom. Control, vol. 36, no. 6,
pp. 683–691, Jun. 1991.

[20] J. P. Donoghue, “Connecting cortex to machines: Recent advances in
brain interfaces,” Nature Neurosci., vol. 5, pp. 1085–1088, Nov. 2002.

[21] A. B. Schwartz, “Cortical neural prosthetics,” Annu. Rev. Neurosci.,
vol. 27, pp. 487–507, 2004.

[22] M. A. Lemay and P. E. Crago, “A dynamic model for simulating move-
ments of the elbow, forearm, an wrist,” J. Biomech., vol. 29, no. 10, pp.
1319–1330, Oct. 1996.

[23] K. G. Gerritsen, A. J. van den Bogert, M. Hulliger, and R. F. Zernicke,
“Intrinsic muscle properties facilitate locomotor control—A computer
simulation study,” Motor Control, vol. 2, no. 3, pp. 206–220, Jul. 1998.

[24] G. E. Loeb, I. E. Brown, and E. J. Cheng, “A hierarchical foundation
for models of sensorimotor control,” Exp. Brain Res., vol. 126, no. 1,
pp. 1–18, May 1999.

[25] S. L. Delp and J. P. Loan, “A graphics-based software system to
develop and analyze models of musculoskeletal structures,” Comput.
Biol. Med., vol. 25, no. 1, pp. 21–34, Jan. 1995.

[26] S. L. Delp and J. P. Loan, “A computational framework for simulating
and analyzing human and animal movement,” Comput. Sci. Eng., vol.
2, no. 5, pp. 46–55, 2000.

[27] R. Davoodi and G. E. Loeb, “A software tool for faster development
of complex models of musculoskeletal systems and sensorimotor con-
trollers in simulink,” J. Appl. Biomech., vol. 18, pp. 357–365, 2002.

[28] R. Davoodi, I. E. Brown, and G. E. Loeb, “Advanced modeling envi-
ronment for developing and testing FES control systems,” Med. Eng.
Phys., vol. 25, no. 1, pp. 3–9, Jan. 2003.

[29] B. A. Garner and M. G. Pandy, “Estimation of musculotendon proper-
ties in the human upper limb,” Annals Biomed. Eng., vol. 31, no. 2, pp.
207–220, Feb. 2003.

[30] B. A. Garner and M. G. Pandy, “The obstacle-set method for repre-
senting muscle paths in musculoskeletal models,” Comput. Methods
Biomech. Biomed. Eng., vol. 3, no. 1, pp. 1–30, 2000.

[31] M. Hauschild, R. Davoodi, and G. E. Loeb, “A virtual reality environ-
ment for designing and fitting neural prosthetic limbs,” IEEE Trans.
Neural Syst. Rehab. Eng., vol. 15, no. 1, pp. 9–15, Mar. 2007.

[32] R. Kaliki, R. Davoodi, and G. E. Loeb, “The effect of training set on
prediction of elbow trajectory from shoulder trajectory during reaching
to targets,” in Proc. 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
2006, pp. 5483–5486.

[33] R. Davoodi, M. Hauschild, J. Lee, P. T. Montazemi, and G. E. Loeb,
“Biomimetic control of FES reaching,” presented at the 1st Int. Conf.
Neural Interface Control, Wuhan, China, 2005.

Rahman Davoodi received the B.S. degree in
mechanical engineering and the M.Sc. degree in
biomechanical engineering from Sharif University
of Technology, Tehran, Iran, and the Ph.D. degree in
biomedical engineering from University of Alberta,
Edmonton, AB, Canada.

He is currently a Research Assistant Professor with
the Department of Biomedical Engineering, Univer-
sity of Southern California, Los Angeles. His cur-
rent research is focused on the use of functional elec-
trical stimulation (FES) to restore activities of normal

daily living to the paralyzed and amputee patients such as standing, reaching,
grasping, and exercise. He has used machine learning techniques to coordinate
man-machine interactions in these systems. He has also developed several soft-
ware tools for modeling, simulation, and virtual prototyping of complex neural
prostheses for paralyzed and amputee patients.

Chet Urata received the B.A. degree in computer sci-
ence from the University of California, Berkeley, in
1984.

He currently runs the Urata Corporation, a soft-
ware development company based in Waianae, HI.
He has almost 25 years of programming experience
in the fields of biomedical, defense, general business,
and the internet.

Markus Hauschild received the Diploma in mecha-
tronics from Munich University of Applied Sciences,
Munich, Germany, in 2002. Currently, he is pursuing
the Ph.D. degree in biomedical engineering from the
University of Southern California, Los Angeles.

In 2001, he joined the DLR Institute of Robotics
and Mechatronics, Oberpfaffenhofen, Germany,
where he developed control strategies for harmonic
drive gears. In 2003, he was a Visiting Researcher
with the National Yunlin University of Science and
Technology, Taiwan, R.O.C., where he developed

iterative learning control for compensation of periodic disturbances. His
research interests include human-machine-interfaces, motor control, neural
interfaces, and prosthetics.



1918 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 11, NOVEMBER 2007

Mehdi Khachani received the B.Eng. degree in elec-
trical engineering from Ecole Polytechnique de Mon-
teal, Montreal, QC, Canada, and the M.Eng. degree
in biomedical engineering from McGill University,
Montreal, QC, Canada.

He is a Biomedical Engineer with the Modeling
and Control Group, the Alfred Mann Institute,
University of Southern California, Los Angeles.
His main work is directed towards developing the
musculoskeletal modeling software and the virtual
reality environment.

Gerald E. Loeb (M’98) received the B.A. and M.D.
degrees from Johns Hopkins University, Baltimore,
MD, in 1969 and 1972.

Currently, he is a Professor with the Department
of Biomedical Engineering and Neurology and
a Director of the Medical Device Development
Facility of the A. E. Mann Institute for Biomedical
Engineering, the University of Southern California,
Los Angeles. He completed one year of surgical
residency with the University of Arizona, Tucson,
before joining the Laboratory of Neural Control at

the National Institutes of Health from 1973 to 1988. From 1988 to 1999, he was
a Professor with the Department of Physiology and Biomedical Engineering,
Queen’s University, Kingston, ON, Canada. He was one of the original devel-
opers of the cochlear implant to restore hearing to the deaf and from 1994 to
1999, he was a Chief Scientist for Advanced Bionics Corporation, Sylmar, CA,
manufacturers of the Clarion cochlear implant. He holds 43 issued U.S. patents
and is the author of over 200 scientific papers. His current research is directed
toward neural prosthetics to reanimate paralyzed muscles and limbs using a new
technology that he and his collaborators developed called BIONs. This work
is supported by an NIH Bioengineering Research Partnership and is one of
the testbeds in the National Science Foundation Engineering Research Center
on Biomimetic MicroElectronic Systems, for which he is deputy director.
These clinical applications build on his long-standing basic research into the
properties and natural activities of muscles, motoneurons, proprioceptors, and
spinal reflexes.

Dr. Loeb is a Fellow of the American Institute of Medical and Biological
Engineers.


