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Experiments indicate that voluntary shoulder movements may be used to generate the

control signals needed for operation of arms and hands that are paralyzed or artificial.
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ABSTRACT | C5/C6 tetraplegic patients and transhumeral

amputees may be able to use voluntary shoulder motion as

command signals for a functional electrical stimulation (FES)

system or a transhumeral prosthesis. Such prostheses require, at

the most basic level, the control of endpoint position in three

dimensions, hand orientation, and grasp. Spatiotemporal syner-

gies exist between the proximal and distal arm joints for goal-

oriented reaching movements as performed by able-bodied

subjects. To fit these synergies, we utilized three-layer artificial

neural networks. These networks could be used as a means for

obtaining user intent information during reaching movements.

We conducted reaching experiments in which subjects reached

to and grasped a handle in a three-dimensional gantry. In our

previous work, the three rotational angles at the shoulder were

used to predict elbow flexion/extension angle during reaches

on a two-dimensional plane. In this paper, we extend this

model to include the two translational movements at the

shoulder as inputs and an additional output of forearm

pronation/supination. Counterintuitively, as the complexity of

the task and the complexity of the neural network architecture

increased, the performance also improved.

KEYWORDS | Artificial neural networks; control; functional

electrical stimulation; motor control; prosthesis; reaching;

upper limb

I . INTRODUCTION

Bilateral amputations and quadriplegia are debilitating
conditions in which patients are unable to perform most

activities of daily living. The restoration of any function-

ality to these patients has been the paramount goal for

many researchers. Reaching and grasping objects are

obviously particularly important. Advanced mechatronic

prosthetic arms and hands should provide motor capability

for amputees. Functional electrical stimulation (FES) to

reanimate paralyzed muscles can, in principle, restore it to
spinal cord injured patients. In order to apply either

technology successfully, however, there must be a source

of command signals to convey to the prosthetic controller

the motor intentions of the user.

Most patients who have lost arm function as a result of

amputation or spinal cord injury have substantial residual

voluntary control of shoulder motion. Transhumeral

amputation procedures try to leave a long enough stump
on which to attach the socket of the prosthesis. Most

surviving quadriplegic patients have lesions at or below the

C4–5 vertebral junction, leaving intact at least some of the

neural circuitry required for respiratory and shoulder

movements while losing some or all control of the more

distal joints. The hypothesis being tested in our research is

that the residual voluntary shoulder movements contain

sufficient information about those intentions that they can
be used as a continuous source of command signals for the

prosthetic controller.

A. Potential Command Sources
Due to the limited availability of voluntarily controlled

movements in high-level amputations and spinal cord

injuries, many investigators have looked to the brain as a
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potential source of command signals for control of reach
and grasp. The complexity and invasiveness of the

technology are daunting and the long-term viability of

the interfaces has yet to be determined. Nevertheless,

Donoghue et al. have implanted a human subject with a

microelectrode array in the primary motor cortex and the

subject has achieved control of a cursor in the two-

dimensional (2-D) space of a computer monitor [1].

Nicolelis et al. have shown that monkeys with chronically
implanted microelectrodes are able to control the trajec-

tory of a robot arm’s end effector to reach to one of eight

targets in three-dimensional space [2]. But the transition

from control of display cursors and robotic arms to the

control of anthropomorphic limbs is not trivial. This is

because many of the researchers investigating motor

control from the brain have been focusing on relationships

between brain activity and endpoint trajectories in space
and assuming that individual joint trajectories can be

derived by inverse kinematic analysis. But the upper limb

is an overdetermined system in that there are more joints

than necessary to express a given endpoint position and

orientation. This was first described by Bernstein in 1967

as the Bredundancy problem[ [3]. These Bextra[ degrees of
freedom (DOFs) are important, of course, in the interac-

tion of the hand with objects, e.g., in orienting the hand
and controlling the fingers to grasp objects with different

sizes, shapes, and orientations. It remains to be deter-

mined if cortical neural signals can be used to provide such

control without becoming an undue burden on the user.

Recently, some investigators have developed FES

systems that utilize the voluntary movements at the

shoulder of these patients as control signals. One such FES

system is the FreeHand system, which utilizes the residual
voluntary control of the protraction/retraction of the

contralateral shoulder to control the opening and closing

of a hand [4]. The dependence on contralateral shoulder

movements makes it unsuitable for extension to bimanual

tasks and deprives users of the proprioceptive feedback

that might be derived from the interaction of the command

signals with the actual arm being moved. This system,

while a little awkward in its method of control, is able to
restore grasping function but does not lend itself to control

of the equally important functionality of reaching.

Kilgore et al. have designed and implanted a myoelectric-

based FES controller that restored reaching and grasping

function [5]. Myoelectric signals related to the activities of

functional muscles still under voluntary control are used as

commands for individual degrees of freedom through FES.

Implanted patients regained the ability to control various
degrees of freedom and were able to accomplish some

activities of daily living, such as eating and drinking. This

method is a great improvement in terms of functionality

for paraplegic patients, but the number of controlled

outputs is limited by the number of viable voluntary

muscles available. If some of the voluntary muscle groups

were involved in other functions required by the patient,

then the muscle group could not be used as a reliable
command source.

A prosthesis that relies on command sources unrelated

to natural reaching movements forces the user to learn

unnatural reaching control strategies. Such a system could

require ungainly and cumbersome movements to restore

functionality. As described here, it seems desirable to

extract command signals from the natural movements of

the ipsilateral shoulder that the patient spent a lifetime
learning before incurring injury and disability.

B. Prior Research on Ipsilateral Shoulder Control
Popovic et al. [6]–[8] have developed various synergy-

based upper limb neuroprosthetic controllers that pre-

dicted elbow flexion/extension from shoulder flexion/

extension based on simple scaling rules, through inductive

learning, and from training a radial basis function network.
In the latter experiment, synergy models were trained with

joint acceleration data recorded from able-bodied subjects

while executing a sequence of movements: reaching and

grasping an object in a plane, bringing the object to the

mouth, returning the object to its previous position, and

returning the hand back to the initial position. Each

network was trained on data for sequences of movements

to one target location. The investigators found that the
networks were able to predict reaches to targets located

distally to the trained target reach but found that the

network was unable to predict reaches to targets located

laterally to the trained target reach. This indicated that the

synergy rules changed across the two-dimensional work-

space. Therefore, the user would need to manually select

among several synergy rules based on where he or she

wanted to reach. While some reaching motion could be
restored to these subjects, having to switch manually

between synergy rules would become cumbersome during

everyday activities, especially if the user wanted to make

movements across the boundaries of these regions.

In contrast to Popovic et al., we hypothesize that all

three degrees of freedom at the shoulder might contribute

useful information that would generalize better over the

whole workspace, thus eliminating the need for manual
switching. Furthermore, our initial studies suggested that

the spatiotemporal relationships between joint angles are

relatively stable and therefore more likely to result in a

user-controllable system as compared to joint velocity and

joint acceleration relationships. Finally, as opposed to

training synergy models with data from only a single target

location, we wanted to use a set of reaches to a wide range

of target locations in order to account for variations in the
reaching strategy across the workspace. To test these

hypotheses, we trained an adaptive neural network (ANN)

to predict the elbow joint angle from the three rotational

angles of the shoulder joint [9].

An experimental workspace was designed such that

hand position was kept in a horizontal plane during each

reach (similar to Popovic et al.). Sixteen rectangular-shaped
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targets were placed in two concentric arcs on a pegboard as

shown in Fig. 1. The distal target set was distributed on a

circular arc at the maximal reach of the subject while the
proximal target set was placed at the midpoint between the

distal target set and the initial position. The subject was

asked to make self-paced reaches from the initial position to

and from the target position. Shoulder and elbow joint

angles were recorded during eight trials of reaches to each of

the 16 targets.

As previously discussed, the shape and orientation of

the shoulder/elbow angle synergies varied greatly across
the workspace [Fig. 2(a)], but in certain areas of the

workspace, there were subsets of reaches that exhibited

similar spatiotemporal synergies [Fig. 2(b)]. We hypoth-

esized that the ANN might produce better results if trained

only on one representative reach from each such subset,

thereby avoiding overtraining on similar targets in large

subsets at the expense of accuracy on the more individ-

ualized targets. To examine this supposition, we trained

the ANN with incrementally added target reaching data.
Target reaches were added to the training set based on the

ANN’s performance on the last training set. The target

reach that was predicted the worst was added to the

training set, and this process was continued iteratively

until all the targets were added. We found that the error

reached a minimum when we incorporated training data

from 11 of the 16 targets. The correlation between the

predicted elbow angle and the recorded angle on the
validation set was 0.99. Interestingly, seven of these

targets were from the distal set, indicating that the reaches

to the distal targets allowed the ANN to predict reaches in

the proximal set accurately, apparently because the

corresponding synergies between proximal and distal

targets were just scaled versions of each other.

This previous study provided the methodology and

rationale for our present study of reaching to targets
distributed in three dimensions, a necessary goal for most

practical applications of the proposed command scheme.

Furthermore, we tested whether including additional

inputs (related to shoulder translation) improves the

prediction of the elbow angle and whether the prediction

of an additional output, forearm pronation/supination,

degrades the performance of the ANN models.

II . METHODS

A. Target Locations
We constructed a large robotic gantry (Parker

Hannifin, Co.) to automate the presentation of targets in

the three-dimensional (3-D) workspace of the arm. The

computer-controlled gantry was able to reach anywhere in

a (2 � 1 � 1 m3 workspace Fig. 3). Subjects were

instructed to reach and grasp firmly a cylindrical, vertically

oriented handle on the working end of the gantry arm.

Fig. 2. Example of shoulder/elbow synergies of target reaches in Fig. 2. (a) Shoulder/elbow joint synergies of target reaches 1P, 8P, 3-D,

and 6D. (b) Shoulder/elbow joint synergies of target reaches 2-5P. Clearly there is a cluster of synergies for EFE versus SFE synergies.

Fig. 1. A schematic drawing of the two-dimensional workspace

used in previous 2-D point-to-point reaching experiment.
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Prior to experimentation, target locations were tailored to

the subject’s physical measurements. Target locations were

expressed in shoulder-centric spherical coordinates: �, �,
and f (corresponding to the fraction of the subject’s entire

arm length). Measurements were taken of the subject’s

upper ðL1Þ and lower arm ðL2Þ segments, as well as the

height of the subject’s line of sight above the shoulder

center of rotation ðL3Þ to constrain the target locations and
tailor them to the subject (Fig. 3). We first defined a set of

targets in the X–Z plane, which was then rotated about the

z-axis to produce target locations in three dimensions. We
then applied the constraints to the target set to ensure that

all the targets were in a reasonable working space. L3 and

L1 limited the maximum and minimum height of targets in

the y-direction, respectively. To ensure the safety of the

subject during experimentation, we kept the subject’s head

and body outside of the reachable area of the gantry arm.

This limited the location of the front-most targets in our

workspace. The distance between the front-most possible
target and the shoulder center of rotation along the x-axis
was measured ðL4Þ and was used to determine the

minimum angle of � at the subject’s maximal reach

ðf ¼ 1:0Þ in the two-dimensional plane. When the upper

arm crosses the sagittal plane at shoulder joint ð� � 90�Þ,

the maximal reach length is no longer equivalent to the

subject’s arm length due to the restriction of movement as

the humerus makes contact with the torso. In order to
reduce undesirable contributions from the trunk in this

area of the workspace, the line of maximal reach was

approximated by fixing the humerus position at � ¼ 90�

and bending the elbow from 0� to 90�. Intervals between
targets in the �-direction were determined by the

difference in the first target alpha subtracted from the

final target � divided by the number of desired targets at

the line of maximal reach. For this experiment, we had
eight targets along the line of maximal reach ðf ¼ 1:0Þ. For
all other values of f , targets were placed at that radius with
the same angular interval between targets as previously

determined. Once all the targets locations in the X–Z plane
were determined, the plane was then rotated about the

z-axis from � ¼ 90� to � ¼ �90�. Targets that were below
the length of the upper arm segment ðL1Þ in the y-direction
or were at a height greater than the line of sight ðL3Þ were
removed from the target set. The angular interval between

targets in the �-direction was 10�.
An adult male volunteered to perform reaching experi-

ments. His physical measurements were L1 ¼ 11:5 in,

L2 ¼ 14:5 in, and L3 ¼ 6:5 in. The fraction of maximal

Fig. 3. Robotic gantry used to present targets to a subject in 3-D extrapersonal space.
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reach f was varied from 0.5 to 1.0, and this resulted in an
experimental workspace that included 186 target locations

(Fig. 5). Once the target locations were determined, they

were presented to the subject in randomized order by the

gantry control software.

B. Data Acquisition
The subject was asked to sit in a high-back chair, and

elastic restraints were secured around the subject’s torso
and underneath his arms to limit contributions from the

subject’s trunk during movement. Additionally, we restrict-

ed the subject’s wrist movements by bracing the subject’s

wrist with a semirigid brace. In order to record the

subject’s joint angles during experimentation, a Flock of

Birds (Ascension Technologies Corp., Burlington, VA)

motion-capturing system was used with a sample frequency

of 100 Hz. Each Flock of Birds sensor measured position
and orientation (measured in rotation matrices) with

respect to a transmitter. Sensors were placed on the

shoulder (over the Acromion) and humerus and over the

wrist brace (at the distal end of radius). The transmitter was placed between the subject’s knees on the chair. The

Flock of Birds system was calibrated to the subject prior to

experimentation. Clinically, meaningfully Euler angles
were derived from the rotation matrices (Euler rotations

in X-Z-Y order about the moving axes). The calculated

shoulder joint angles were shoulder abduction/adduction

ðSABADÞ, the angles about the x-axis of the fixed reference

frame (Fig. 5); shoulder flexion/extension ðSFEÞ, the angle
about the z-axis of the moving frame; and internal external

rotation ðSIERÞ, the angle about the y-axis of the moving

frame. The other recorded angles were sternoclavicular
depression/elevation ðSCDEÞ, sternoclavicular protraction/
retraction ðSCPRÞ, elbow flexion/extension ðEFEÞ, and

forearm pronation/supination ðFPSÞ. These values along

with the original rotation matrices and the location of

targets were recorded in a synchronized manner by the

experiment control software.

Once the subject was secured in the chair, we placed a

lap tray over the subject’s lap, which indicated the desired
location of the hand’s initial position. During the experi-

ment, the subject was asked to view a display with a pair of

indicator lights shown. Prior to each reach, the subject’s

hand was lying flat (prone) at the initial position. When the

left indicator light displayed a green color, the subject was

cued to grasp the vertical gantry handle. The subject was

told to move at a natural pace. When the subject had

properly grasped the handle, the right indicator turned
green. The right indicator remained green for approximately

3–5 s. When the light turned off, the subject was cued to

return to the initial position. The experiment continued

until all the target locations were reached.

C. Data Preprocessing and Partitioning
After experimentation, the data was filtered offline with

a 3 Hz third-order Butterworth low-pass filter. The 3 Hz
filtering was necessary to remove some 4 Hz noise present

Fig. 4. (a) Top-down view of the 2-Dworkspace boundary. The angle �

is shown as well as significant physical measurements taken of the

subject. This plane is rotated about the z-axis. (b) Side view of the

workspace. The angle � is shown as rotated from��=2 to �=2. The solid

line indicates the maximal reach of the subject and dotted lines

indicated artificial boundaries created to limit the workspace.

Fig. 5. A stem plot of all the locations of the targets in extrapersonal

space (blue). The shoulder center of rotation is shown in red.
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in our motion-capturing hardware, as evidenced by the

presence of the noise in the sensors prior to attachment to
the subject. The data were then down-sampled to 8 Hz to

reduce the data size and normalized by subtracting the mean

from each channel and dividing by the standard deviation.

Finally, data recorded during resting periods between target

reaches were removed in order to limit the contribution of

the initial posture to the neural network from each data set.

Prior to data partitioning, three different primary sets

of target reach data were created. The first primary set
(labeled Ba[) included data from the entire trajectories

(reach plus hold period) to each of the 186 targets. In

the second primary set (b), we removed all the target

reach information that contained reaches in which the

elbow angle while grasping the target handle was less

than 10� different from the initial elbow angle. Shoulder

motion accounted for most of the movement to these

targets, so they were not useful for training elbow angle
output. After we removed these target reaches, the data

set included 146 target reaches. The third primary data

set (c) included only those targets from set b that were

at f 9 0:8. This limited the data set to 50 target reaches.

Prior to ANN training, the primary data sets were

divided into two sets: a secondary working set, with which

the ANN was trained, and a validation set, which included

novel data to evaluate the performance of the ANN. Twenty
percent of the data from the primary data set were randomly

chosen and set aside as the validation set. The remaining

data were designated the secondary working set. From the
secondary working set, 70% of the data were randomly

distributed in a training set and the remaining values

designated as the test set. The training set included data

with which the ANN would be trained via backpropagation,

and the test set was novel data used to measure the ANN’s

ability to generalize during ANN training.

D. Neural Network Training
Two-layer perceptron ANNs were created in Neural-

Works Predict (NeuralWare). This software employed an

adaptive gradient backwards propagation algorithm to tune

the weights and biases of the ANN to maximize the

correlation between the model predictions and the recorded

data. Hidden units had hyperbolic tangent activation

functions. The output units were logistic sigmoid activation

functions. Hidden layer size was determined through a
cascade learning algorithm developed by Fahlman and

Lebiere [10]. This algorithm adds hidden units incremen-

tally to the hidden layer until performance on the test set is

no longer improved. The software also used early stopping

to prevent the ANN from overfitting and to improve

generalization. Early stopping examines the performance of

the ANN during training by examining its performance on

the test set. If the network’s performance on the test set is
no longer improved, then training is stopped.

Fig. 6. A schematic of the subject during experimentation. The locations of the Flock of Birds sensors are shown. The coordinate system

used indetermining the clinicallymeaningful Euler joint angles is shown. The recorded joint angleswere shoulder abduction/adduction ðSABADÞ,
the angles about the x-axis of the fixed reference frame; shoulder flexion/extension ðSFEÞ, the angle about the y-axis of the moving frame;

internal external rotation ðSIERÞ, the angle about the z-axis of the moving frame; sternoclavicular depression/elevation ðSCDEÞ, the translation

along the y-axis of the shoulder frame; sternoclavicular protraction/retraction ðSCPRÞ, the translation along the x-axis of the shoulder frame;

elbow flexion/extension ðEFEÞ, the angle about the z-axis of the elbow frame; and forearm pronation/supination ðFPSÞ, the angle about

the x-axis of the elbow frame.
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ANNs were constructed with three different input/
output (I/O) relationships to examine the efficacy of

different inputs and whether the addition of multiple distal

angle outputs significantly degraded ANN performance. The

first set of I/Os examined the ability of the three rotational

joint angles at the shoulder joint (SFE, SIER, and SABAD) to

predict the elbow angle ðEFEÞ during reaches in 3-D. ANNs

trained with this set of I/Os were labeled ANN1x, where x is

a place holder for the primary data set type (a, b, or c). The
next set of I/Os incorporated shoulder translation move-

ments (SCDE and SCPR) as inputs in addition to SFE, SIER,
and SABAD and evaluated whether these additional inputs

improved predictability of the EFE. These sets of ANNs

were labeled ANN2x. The third and final set of I/Os used

the same input, the five DOFs at the shoulder, as the

previous set but added the forearm pronation/supination

ðFPSÞ in addition to EFE as the outputs of the ANNs. This
set of I/Os was created to examine the potential to predict

FPS for further study and whether predictive performance

significantly degraded for prediction of the EFE. The

coefficient of determination ðR2Þ between the predicted

output and recorded output was measured for all the ANNs.

Any R2 value above 0.7 was considered a strong correlation.

Additionally, the root mean squared (rms) error between

the predicted and recorded outputs was measured. Because
the data were normalized by the standard deviation prior to

training, the error is unitless.

III . RESULTS

An example of target reach data used to train neural

networks is shown in Fig. 7. Table 1 shows the tabulated

R2 and rms errors for neural networks ANN1a, ANN1b,

and ANN1c. Inputs to these neural networks were the

three rotational angles at the shoulder while the output

was the elbow angle. The errors and R2-values are shown
for each of the data sets: training, test, and validation sets.

The R2-values for each of the ANNs on the validation set

were greater than 0.70 and, therefore, are considered

strong correlations. The neural network trained with the

distal targets ðf 9 0:8Þ reported the highest R2 and lowest

rms error for each of the data sets.

Table 2 summarizes the performance of neural

networks ANN2a, ANN2b, and ANN2c. The inputs to
these neural networks were the three rotational angles

and two translational movements at the shoulder. The

output was the elbow angle. The R2-values and rms

error values are tabulated for the training, test, and

validation sets. The R2-values for all the ANNs were

high. Neural networks trained with the distal targets

ðf 9 0:8Þ achieved the highest R2 for both the training

and test data sets and lowest rms error for all data sets.
ANN2b had a slightly higher R2-value (0.8677) than

ANN2c (0.8630) on the validation set.

Table 3 summarizes data from the final set of trained

neural networks. These networks were trained with the

Fig. 7. Typical example of Euler angles recorded during a reach to a

target (� ¼ 33:5�, � ¼ 21:3�, f ¼ 1:0). The black, blue, and red plots

correspond to shoulder rotational angles, shoulder translational

movements, and distal arm angles.

Table 1 Summary Data Shown for Neural Networks Trained With Three

Rotational Shoulder Angles as Inputs Predicting the Elbow Angle as the

Output. R2 and Root Mean Squared Errors Shown for Train, Test, and

Validation Sets

Table 2 Summary Data Shown for Neural Networks Trained With Three

Rotational Shoulder Angles and Two Translational Angles as Inputs

Predicting the Elbow Angle as the Output. R2 and Root Mean Squared

Errors Shown for Train, Test, and Validation Sets
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three shoulder rotational angles and translational move-

ments as the inputs and both the elbow flexion extension

and forearm pronation/supination as the output. The R2-

values and rms errors are tabulated for each data set.

ANN3c achieved the highest R2 and lowest rms error for

both inputs on all data sets and was the only ANN able to

predict the outputs with strong correlations to the

recorded outputs for all three data sets. The FPS was
consistently predicted accurately across all trained ANNs

and data sets. The correlation for the predicted elbow

output was relatively low for all data sets of ANN3a and on

the training and test sets of ANN3b.

IV. DISCUSSION

From the results of ANN1a, -b, and -c, it is clear that neural
networks using three shoulder rotational angles to predict

the elbow angle during reaching in two-dimensions can be

extended to adequately predict the elbow angle for

reaching movements in a large three-dimensional extra-

personal space. Additionally, removing both weaker

synergies and proximal targets improves the performance

of the network.

Reaching in two dimensions did not require the
additional shoulder translational movements because all

targets were in the horizontal plane. Presenting targets in

three dimensions and fixing the wrist forced the subject to

make scapuloclavicular movements. Adding those shoul-

der translational movements as inputs to the neural

networks resulted in an increase in performance.

As more and more degrees of freedom are added to
both the input and the output of the neural network, it is

often expected that the increased complexity will result in

a decrease in performance. Adding the additional output of

forearm pronation/supination did not significantly hinder

the performance of a neural network on both outputs when

an ANN was trained with just distal targets. The

predictability of the network for the elbow angle decreased

only slightly, while theR2-value for the forearm pronation/
supination output was extremely high ðR2 ¼ 0:95Þ for

ANN3c. As more targets were added to the primary data

set, the performance on the EFE output gradually

decreased. Perhaps two separately trained networks for

each output are required to reach a high level of

performance on each output.

It should be noted that this experiment was highly

constrained in terms of forearm movement. The forearm
movement from the initial position to the target position

was stereotyped in that the subject was always forced to

grasp the handle in the same vertical orientation in space,

but this actually requires a different anatomical pronation/

supination posture depending on shoulder angles. These

preliminary results suggest that there are useful synergies

among the five shoulder inputs and the forearm angle, and

that further studies are required to understand the full
extent and potential clinical utility of this relationship.

In the study reported in this paper, we used Euler

rotations to represent the joint movements in the ANN

training data. This commonly used method of joint motion

representation produces motion data that is easier to

understand and interpret. But the trigonometric conver-

sion from rotation matrices to Euler angles is prone to

singularities in some areas of the workspace, which occur
frequently in unconstrained 3-D reaching movements.

During preprocessing of the data, we removed any

singularities present in the data prior to neural network

training. To prevent the singularity problem, we have also

trained neural networks on the complete rotation matrices

as inputs/outputs. There was no significant difference in

the performance, but the nine-dimensional results are

more difficult to visualize and interpret. In future studies,
we plan to use quaternions to alleviate the problem of

singularities.

Achieving a high level of offline neural network

performance is encouraging, but these results do not

provide any information about the tractability of these

neural networks in a prosthetic system. In order to

determine whether these predictive algorithms are actually

stable and useful as a basis for real-time control, further
studies are required to examine how these trained ANNs

behave in real-time virtual reality simulations analogous to

real-world prostheses and FES systems [11]. Informal tests

of a subject’s ability to use ANN3c to control a kinematic

simulation of a prosthetic arm were encouraging. The

subject was able to make stable and reasonably accurate

reaches in the workspace with little training, but methods to

Table 3 Summary Data Shown for Neural Networks Trained With Three

Rotational Shoulder Angles and Two Translational Angles as Inputs

Predicting the Elbow Angle and Forearm Angle as the Output. R2 and Root

Mean Squared Errors Shown for Train, Test, and Validation Sets
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quantify such performance and learning remain to be
implemented. Furthermore, it remains to be seen whether

forcing the subject into a nonnatural reaching strategy by

fixing the wrist movements has limited the tractability of

these neural networks. Further studies need to be conducted

to examine the significance of this constraint.

Eventually, we plan to embed these synergy models

into controllers for FES and powered prosthetic limbs. In

these systems, the residual shoulder movements would act
as command signals to drive the movements of the distal

limb or the prosthesis. Implanted and wearable sensors for

the shoulder kinematics are under development [12]. We
plan to use our virtual reality environment as a training

tool with which a patient using stereogoggles can train to

operate a simulation of their FES arm or transhumeral

prosthetic. For FES patients, we plan to restore movement

to the distal limb with injectable, wireless, FES devices

called BIONs [13]. Command signals specifying desired

joint angles would have to be converted into desired

muscle activations according to an inverse model of
musculoskeletal dynamics and any available sources of

kinematic feedback. h
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